Given:
A number is 400.
To find:
The additive inverse of 400.
Solution:
We know that the sum of a number and its additive inverse is 0.
If "a" is number and "b" is its additive inverse, then

Let x be the additive inverse of 400. Then,

Subtract both sides by 400.


Therefore, the additive inverse of 400 is
.
Answer:
27.69 cubic meters
Step-by-step explanation:
1 cubic feet =0.028 cubic meter
978*0.02832= 27.69cubic meters
ANSWER
The coordinates of the image are (2,2)
EXPLANATION
The mapping for a reflection across the line y=k is :

We want to find the image of the point (2,-4) after a reflection in the line y=-1.
In this case k=-1.

This simplifies to,


Hence the image is (2,2)
Answer:
n squared + 3n + 1
Step-by-step explanation:
5,11,19,29
Firstly look at the difference between each number. The first difference is 6 then 8 then 10 etc. After that you look at your created sequence - 6,8,10 etc. The difference is 2 each time. Then applying rules, you have to do the constant difference divided by 2 to get a coefficient of n squared. So in this case it's n squared because 2/2 = 1 so you don't have to place a 1 in front of the n squared. After you create a sequence from the n squared. That would be 1,4,9 etc. Then you need to see how to get from the sequence: 1,4,9 etc to your original sequence: 5,11,19 etc. So if you calculate it you will get 4,7,10 because firstly 5-1 = 4 then 11-4 = 7 etc. The sequence 4,7,10 is a linear sequence so the constant difference is 3 each time. So to get a nth term of a linear sequence you will start off as 3n then you will substitute 1 then 2 then 3 into the 3n. Therefore that would be 3,6 etc. So if you take the first substituted term, that would be 3 as said before then you will have to see how to get from the 3 to 4 so that is just adding 1. So the nth term of this linear sequence is 3n + 1. Check if it works at the end. So the overall nth term of the quadratic sequence is n squared as said before + 3n + 1.