1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pshichka [43]
3 years ago
6

In a study of 225 adults, the mean heart rate was 72 beats per minute. Assume the population of heart rates is known to be appro

ximately normal with a standard deviation of 10 beats per minute. What is the 90% confidence interval for the mean beats per minute?
Mathematics
2 answers:
Aleonysh [2.5K]3 years ago
3 0
<span> The lower and upper bounds of the confidence intervals must be equally distanced from the mean 
so it will be
</span><span>70.9 - 73.1 
</span>hope it helps
bonufazy [111]3 years ago
3 0

Answer:

Confidence interval lower bound = 72-1.097 = 70.903

                                Upper bound = 72+1.097=73.097

Step-by-step explanation:

In a study of 225 adults, the mean heart rate was 72 beats per minute

Hence sample size n = 225

sigma = population std deviation = 10

Sample std deviation = 10/sqrt 225 = 0.67

Since n is sufficiently large we can use Z critical value for finding confidence interval 90%

Two tailed z critical for 90% is 1.645

Margin of error = 1.645 *0.67=1.097

Confidence interval lower bound = 72-1.097 = 70.903

                                Upper bound = 72+1.097=73.097

You might be interested in
HELP ASAP!!!
Umnica [9.8K]
Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation : 

           (a)/(a^2-16)+(2/(a-4))-(2/(a+4))=0 

Simplify ————— a + 4 <span>Equation at the end of step  1  :</span><span> a 2 2 (—————————+—————)-——— = 0 ((a2)-16) (a-4) a+4 </span><span>Step  2  :</span> 2 Simplify ————— a - 4 <span>Equation at the end of step  2  :</span><span> a 2 2 (—————————+———)-——— = 0 ((a2)-16) a-4 a+4 </span><span>Step  3  :</span><span> a Simplify ——————— a2 - 16 </span>Trying to factor as a Difference of Squares :

<span> 3.1 </span>     Factoring: <span> a2 - 16</span> 

Theory : A difference of two perfect squares, <span> A2 - B2  </span>can be factored into <span> (A+B) • (A-B)

</span>Proof :<span>  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 <span>- AB + AB </span>- B2 = 
        <span> A2 - B2</span>

</span>Note : <span> <span>AB = BA </span></span>is the commutative property of multiplication. 

Note : <span> <span>- AB + AB </span></span>equals zero and is therefore eliminated from the expression.

Check : 16 is the square of 4
Check : <span> a2  </span>is the square of <span> a1 </span>

Factorization is :       (a + 4)  •  (a - 4) 

<span>Equation at the end of step  3  :</span> a 2 2 (————————————————— + —————) - ————— = 0 (a + 4) • (a - 4) a - 4 a + 4 <span>Step  4  :</span>Calculating the Least Common Multiple :

<span> 4.1 </span>   Find the Least Common Multiple 

      The left denominator is :      <span> (a+4) •</span> (a-4) 

      The right denominator is :      <span> a-4 </span>

<span><span>                  Number of times each Algebraic Factor
            appears in the factorization of:</span><span><span><span>    Algebraic    
    Factor    </span><span> Left 
 Denominator </span><span> Right 
 Denominator </span><span> L.C.M = Max 
 {Left,Right} </span></span><span><span> a+4 </span>101</span><span><span> a-4 </span>111</span></span></span>


      Least Common Multiple: 
      (a+4) • (a-4) 

Calculating Multipliers :

<span> 4.2 </span>   Calculate multipliers for the two fractions 


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 1

   Right_M = L.C.M / R_Deno = a+4

Making Equivalent Fractions :

<span> 4.3 </span>     Rewrite the two fractions into<span> equivalent fractions</span>

Two fractions are called <span>equivalent </span>if they have the<span> same numeric value.</span>

For example :  1/2   and  2/4  are equivalent, <span> y/(y+1)2  </span> and <span> (y2+y)/(y+1)3  </span>are equivalent as well. 

To calculate equivalent fraction , multiply the <span>Numerator </span>of each fraction, by its respective Multiplier.

<span> L. Mult. • L. Num. a —————————————————— = ————————————— L.C.M (a+4) • (a-4) R. Mult. • R. Num. 2 • (a+4) —————————————————— = ————————————— L.C.M (a+4) • (a-4) </span>Adding fractions that have a common denominator :

<span> 4.4 </span>      Adding up the two equivalent fractions 
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

a + 2 • (a+4) 3a + 8 ————————————— = ————————————————— (a+4) • (a-4) (a + 4) • (a - 4) <span>Equation at the end of step  4  :</span> (3a + 8) 2 ————————————————— - ————— = 0 (a + 4) • (a - 4) a + 4 <span>Step  5  :</span>Calculating the Least Common Multiple :

<span> 5.1 </span>   Find the Least Common Multiple 

      The left denominator is :      <span> (a+4) •</span> (a-4) 

      The right denominator is :      <span> a+4 </span>

<span><span>                  Number of times each Algebraic Factor
            appears in the factorization of:</span><span><span><span>    Algebraic    
    Factor    </span><span> Left 
 Denominator </span><span> Right 
 Denominator </span><span> L.C.M = Max 
 {Left,Right} </span></span><span><span> a+4 </span>111</span><span><span> a-4 </span>101</span></span></span>


      Least Common Multiple: 
      (a+4) • (a-4) 

Calculating Multipliers :

<span> 5.2 </span>   Calculate multipliers for the two fractions 


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 1

   Right_M = L.C.M / R_Deno = a-4

Making Equivalent Fractions :

<span> 5.3 </span>     Rewrite the two fractions into<span> equivalent fractions</span>

<span> L. Mult. • L. Num. (3a+8) —————————————————— = ————————————— L.C.M (a+4) • (a-4) R. Mult. • R. Num. 2 • (a-4) —————————————————— = ————————————— L.C.M (a+4) • (a-4) </span>Adding fractions that have a common denominator :

<span> 5.4 </span>      Adding up the two equivalent fractions 

(3a+8) - (2 • (a-4)) a + 16 ———————————————————— = ————————————————— (a+4) • (a-4) (a + 4) • (a - 4) <span>Equation at the end of step  5  :</span> a + 16 ————————————————— = 0 (a + 4) • (a - 4) <span>Step  6  :</span>When a fraction equals zero :<span><span> 6.1 </span>   When a fraction equals zero ...</span>

Where a fraction equals zero, its numerator, the part which is above the fraction line, must equal zero.

Now,to get rid of the <span>denominator, </span>Tiger multiplys both sides of the equation by the denominator.

Here's how:

a+16 ——————————— • (a+4)•(a-4) = 0 • (a+4)•(a-4) (a+4)•(a-4)

Now, on the left hand side, the <span> (a+4) •</span> (a-4)  cancels out the denominator, while, on the right hand side, zero times anything is still zero.

The equation now takes the shape :
   a+16  = 0

Solving a Single Variable Equation :

<span> 6.2 </span>     Solve  :    a+16 = 0<span> 

 </span>Subtract  16  from both sides of the equation :<span> 
 </span>                     a = -16 

One solution was found :

                  <span> a = -16</span>

4 0
3 years ago
What is the volume, in cubic cm, of a cylinder with a height of 8cm and a base radius of 7cm, to the nearest tenths place?
FromTheMoon [43]

Answer:

Volume of the cylinder =  1230.88\,cm^3

Step-by-step explanation:

Height(h) of the cylinder = 8 cm

Radius(r) of the base= 7cm

Volume of a cylinder is:

                  = \pi \times r^2\times h

As,

   \pi =\dfrac{22}{7} = 3.14

Putting the values in the formula:

Volume is:

           =3.14\times(7\times7)\times8\\\\=3.14\times49\times8\\\\=3.14\times392\\\\=1230.88\,cm^3

The volume of the cylinder is :  1230.88\,cm^3

7 0
3 years ago
7. Which is the area of a rectangle TYOC with vertices T(-6, 6), Y(2, 10), 0(4, 6),
antiseptic1488 [7]

Answer:b

Step-by-step explanation:

5 0
3 years ago
Anyone know the answer?
kherson [118]

Answer:

A≈18.38

Step-by-step explanation:

Solve for area

Shape: Parallelogram

Formula: Base*Height

5.25*3.5=18.375

Round answer

Hope this helps.

6 0
3 years ago
The length of a log of wood is 90 in. How many cuts do you need to make to obtain
Ilia_Sergeevich [38]

The greatest number of pieces will be 12 where each piece will have a different length and the length of each piece is a whole number, in inches and the remaining piece length will be 12 in(90 - 78).

<h3>What is a sequence?</h3>

It is defined as the systematic way of representing the data that follows a certain rule of arithmetic.

The total length of the wood = 90 in

We have to cut it into the greatest number of pieces, where each piece will have a different length and the length of each piece is a whole number, in inches.

We can cut it like:

1 in, 2 in, 3 in, 4 in, and so on

The above shows the arithmetic sequence,

The sum of the n natural number is given by:

\rm S_n = \dfrac{n(n+1)}{2}

\rm 90 = \dfrac{n(n+1)}{2}

After solving, we will get a quadratic equation:

n² + n -180 = 0

After solving, we will get:

n = 12.92 and n = -13.92(term can not be negative)

n = 12 (taking whole number)

Thus, the greatest number of pieces will be 12 where each piece will have a different length and the length of each piece is a whole number, in inches and the remaining piece length will be 12 in(90 - 78).

Learn more about the sequence here:

brainly.com/question/21961097

#SPJ1

6 0
2 years ago
Other questions:
  • Someone PLEASE help!!!!!!!!!!Solve the equation. b/-4 = -2
    9·2 answers
  • If you invested $500 at 5% simple interest for 2 years, how much interest do you earn? Show work and answer in complete sentence
    14·1 answer
  • 45÷9 + 8×3<br>Help!!!<br>use pemdas
    6·2 answers
  • How many 2/3 cup servings are in 8 cup container of juice
    7·2 answers
  • To add 547+ 327, would you need to regroup ?​
    11·1 answer
  • Help please? 15 points here
    14·1 answer
  • What are two numbers that multiply to -20 and add to 1
    9·1 answer
  • HELP ME! thank youu!
    13·1 answer
  • Write in standard form 8x2−5+7x4−9x−x5<br><br><br> Please explain i don't understand
    15·2 answers
  • Find the missing side. Round your<br> answer to the nearest tenth.<br> 68 degrees <br> x<br> 28 in
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!