Answer:
Step-by-step explanation:
I'm sure you want your functions to appear as perfectly formed as possible so that others can help you. f(x) = 4(2)x should be written with the " ^ " sign to denote exponentation: f(x) = 4(2)^x
f(b) - f(a)
The formula for "average rate of change" is a.r.c. = --------------
b - a
change in function value
This is equivalent to ---------------------------------------
change in x value
For Section A: x changes from 1 to 2 and the function changes from 4(2)^1 to 4(2)^2: 8 to 16. Thus, "change in function value" is 8 for a 1-unit change in x from 1 to 2. Thus, in this Section, the a.r.c. is:
8
------ = 8 units (Section A)
1
Section B: x changes from 3 to 4, a net change of 1 unit: f(x) changes from
4(2)^3 to 4(2)^4, or 32 to 256, a net change of 224 units. Thus, the a.r.c. is
224 units
----------------- = 224 units (Section B)
1 unit
The a.r.c for Section B is 28 times greater than the a.r.c. for Section A.
This change in outcome is so great because the function f(x) is an exponential function; as x increases in unit steps, the function increases much faster (we say "exponentially").
Answer = 1.414
I used the prime factorization method.
Hope this answers your question.
Answer: 0.951%
Explanation:Note that in the problem, the scenario is either the adult is using or not using smartphones. So, we have a yes or no scenario involved with the random variable, which is the number of adults using smartphones. Thus, the number of adults using smartphones follows the binomial distribution.
Let x be the number of adults using smartphones and n be the number of randomly selected adults. In Binomial distribution, the probability that there are k adults using smartphones is given by

Where p = probability that an adult is using smartphones = 54% (since 54% of adults are using smartphones).
Since n = 12 and k = 3, the probability that fewer than 3 are using smartphones is given by

Therefore, the probability that there are fewer than 3 adults are using smartphone is 0.00951 or
0.951%.