tis a little of plain differentiation.
we know the radius of the cone is decreasing at 10 mtr/mins, or namely dr/dt = -10, decreasing, meaning is negative.
we know the volume is decreasing at a rate of 1346 mtr/mins or namely dV/dt = -1346, also negative.
so, when h = 9 and V = 307, what is dh/dt in essence.
we'll be needing the "r" value at that instant, so let's get it

now let's get the derivative of the volume of the cone
![V=\cfrac{1}{3}\pi r^2 h\implies \cfrac{dV}{dt}=\cfrac{\pi }{3}\stackrel{product~rule}{ \left[ \underset{chain~rule}{2r\cdot \cfrac{dr}{dt}}\cdot h+r^2\cdot \cfrac{dh}{dt} \right]} \\\\\\ -1346=\cfrac{\pi }{3}\left[2\sqrt{\cfrac{307}{3\pi }}(-10)(9)~~+ ~~ \cfrac{307}{3\pi } \cdot \cfrac{dh}{dt}\right]](https://tex.z-dn.net/?f=V%3D%5Ccfrac%7B1%7D%7B3%7D%5Cpi%20r%5E2%20h%5Cimplies%20%5Ccfrac%7BdV%7D%7Bdt%7D%3D%5Ccfrac%7B%5Cpi%20%7D%7B3%7D%5Cstackrel%7Bproduct~rule%7D%7B%20%5Cleft%5B%20%5Cunderset%7Bchain~rule%7D%7B2r%5Ccdot%20%5Ccfrac%7Bdr%7D%7Bdt%7D%7D%5Ccdot%20h%2Br%5E2%5Ccdot%20%5Ccfrac%7Bdh%7D%7Bdt%7D%20%5Cright%5D%7D%20%5C%5C%5C%5C%5C%5C%20-1346%3D%5Ccfrac%7B%5Cpi%20%7D%7B3%7D%5Cleft%5B2%5Csqrt%7B%5Ccfrac%7B307%7D%7B3%5Cpi%20%7D%7D%28-10%29%289%29~~%2B%20~~%20%5Ccfrac%7B307%7D%7B3%5Cpi%20%7D%20%5Ccdot%20%5Ccfrac%7Bdh%7D%7Bdt%7D%5Cright%5D)
![-\cfrac{4038}{\pi }=-\cfrac{180\sqrt{307}}{\sqrt{3\pi }}+\cfrac{307}{3\pi } \cdot \cfrac{dh}{dt}\implies \left[ -\cfrac{4038}{\pi }+\cfrac{180\sqrt{307}}{\sqrt{3\pi }} \right]\cfrac{3\pi }{307}=\cfrac{dh}{dt} \\\\\\ -\cfrac{12114}{307}+\cfrac{180\sqrt{3\pi }}{\sqrt{307}}=\cfrac{dh}{dt}\implies -7.920939735970634 \approx \cfrac{dh}{dt}](https://tex.z-dn.net/?f=-%5Ccfrac%7B4038%7D%7B%5Cpi%20%7D%3D-%5Ccfrac%7B180%5Csqrt%7B307%7D%7D%7B%5Csqrt%7B3%5Cpi%20%7D%7D%2B%5Ccfrac%7B307%7D%7B3%5Cpi%20%7D%20%5Ccdot%20%5Ccfrac%7Bdh%7D%7Bdt%7D%5Cimplies%20%5Cleft%5B%20-%5Ccfrac%7B4038%7D%7B%5Cpi%20%7D%2B%5Ccfrac%7B180%5Csqrt%7B307%7D%7D%7B%5Csqrt%7B3%5Cpi%20%7D%7D%20%5Cright%5D%5Ccfrac%7B3%5Cpi%20%7D%7B307%7D%3D%5Ccfrac%7Bdh%7D%7Bdt%7D%20%5C%5C%5C%5C%5C%5C%20-%5Ccfrac%7B12114%7D%7B307%7D%2B%5Ccfrac%7B180%5Csqrt%7B3%5Cpi%20%7D%7D%7B%5Csqrt%7B307%7D%7D%3D%5Ccfrac%7Bdh%7D%7Bdt%7D%5Cimplies%20-7.920939735970634%20%5Capprox%20%5Ccfrac%7Bdh%7D%7Bdt%7D)
Answer:
45, 36
Step-by-step explanation:
let x y minutes be the time for pipes to fill the tank, let n be the water needed to fill the tank.
x-y=9
(n/x)*20+(n/y)*20=n
n is removed by dividing the 2nd equation by n
here u get:
(1/x+1/y)*20=1
you sub x=9+y into the above equation
1/y+1/(9+y)=1/20
((9+y)+(y))*20=(9+y)(y)
180+40y=9y+y2
y2-31y-180=0
then use the quadratic formula and u will find y=36 or -5
-5 is rejected because it is negative
x=36+9=45
therefore it is 36 mins and 45 mins
It is 1/11 or 4/44.
Explained:
This is because when you subtract 26 and 22 you get 4 and when you subtract 4 and -45. The 45 then becomes a positive since when you get a negative and a negative you get a positive. Then you simplify it by 11.