The x-axis intercepts are the roots of the polynomial. So, the roots are x = - 2, x = - 1 and x = 3.
Therefore, the polynomial can be factored as:
(x - (-2)) * ( x - (-1) ) * (x - 3) = (x + 2)(x + 1)(x - 3).
Answer: (x + 2) (x + 1) (x - 3)
2x - 1 + 3x = 0
2x + 3x - 1 = 0
(2 + 3)x - 1 = 0
5x - 1 = 0
Any unknown number in an equation you represent with a variable
(15p⁺⁴.q⁻⁶) /(-20p⁻¹².q⁻³).
Remember that a⁻ⁿ = 1/aⁿ and 1/a⁻ⁿ = aⁿ
(-15/4).(p⁻⁴.q⁻⁶)(p⁺¹².q⁺³).
(-15/20).(p⁻⁴.p¹².q⁻⁶.q³)
Remember aⁿ.aˣ = aⁿ⁺ˣ
(-15/20).(p⁸.q⁻³)
-3/5(p⁸.q⁻³)