let the original price be x.
then,
x- 25% of x= 24
x- 25x/100 = 24
x- x/4=24
3x/4=24
3x= 96
x= 32
in short...the original price= 32 dollars
Consider the two functions as
<span>y1(x) =3x^2 - 5x,
y2(x) = 2x^2 - x - c
The higher the value of c, father apart the two equations will be.
They will touch when the difference, i.e. y1(x)-y2(x)=x^2-4*x+c has a discriminant of 0.
This happens when D=((-4)^2-4c)=0, or when c=4.
(a)
So when c=4, the two equations will barely touch, giving a single solution, or coincident roots.
(b)
when c is greater than 4, the two curves are farther apart, thus there will be no (real) solution.
(c)
when c<4, then the two curves will cross at more than one location, giving two distinct solutions.
It will be more obvious if you plot the two curves in a graphics calculator using c=3,4, and 5.
</span>
Answer:
59.4
Step-by-step explanation:
Let angle be alpha






If you have angle measure in degree put in place of Alpha and get the value elaw this is our final answer
Answer:
m<1 = 26°
m<2 = 154°
m<3 = 26°
m<4 = 26°
m<5 = 154°
m<6 = 154°
m<7 = 26°
Step-by-step explanation:
What is required was not stated, however, let's find the value of every angle labelled in this diagram.
✔️m<1 = 180° - 154° (linear pair theorem)
m<1 = 26°
✔️m<2 = 154° (vertical angles theorem)
m<2 = 154°
✔️m<3 = m<1 (vertical angles theorem)
m<3 = 26° (substitution)
✔️m<4 = m<3 (alternate interior angles theorem)
m<4 = 26° (substitution)
✔️m<5 = m<2 (alternate interior angles theorem)
m<5 = 154° (substitution)
✔️m<6 = m<5 (vertical angles theorem)
m<6 = 154° (substitution)
✔️m<7 = m<4 (vertical angles theorem)
m<7 = 26° (substitution)