Step-by-step explanation:
Actual graph for this problem is attached below
m∠TUV = 167°
m∠TUL = (x + 11)°
m∠LUV = (11x)°
m∠TUV=
m∠TUL+
m∠LUV
now plug in the angles for each
m∠TUV=
m∠TUL+
m∠LUV

solve the equation for x

Subtract 11 from both sides

divide both sides by 12
x=13
m∠TUL = (x + 11)°
m∠TUL = (13+ 11)°
= (24)°
answer:
24°
Answer:
The AP is 1, 11/2, 10, 29/2, 19, ....
Step-by-step explanation:
Let the first term be a and d be the common difference of the arithmetic progression.
ATQ, a+2d+a+6d=38, 2a+8d=38 and a+8d=37. Solving this, we will get a=1 and d=9/2. The AP is 1, 11/2, 10, 29/2, 19, ....
You have to set up to equations
EQ 1: x-2=2 EQ 2: x+2=2
Solve for x and see which value fits the conditions, in this case 4
For starters, find the common change in the terms, in this case each goes down by 3. This lets you know you're gonna have a -3n in your equation as each term decreases by 3. Your equation should be in f(n)=c+rn form, with r being change in f(n), or -3 in this case. This gives you f(n)=c-3n. Now, solve for c, add 3n to both sides to get f(n)+3n=c. Plug in your n of 1 and f(n) of 20 to get c=20+3(1)=23. Plug in your c to your f(n) formula to get f(n)=23-3n as your f(n) function.