Add all the integers together and then divide by 10 because that’s how many numbers you’re adding.
Answer:
Distributive
Step-by-step explanation:
when you distribute 3 to x, 3y, and 5, you get 3x+9y+15, which is equivalent to the other expression when you simplify it
To be precise, the size of your sample space is <span><span>(<span>2410</span>)</span><span>(<span>2410</span>)</span></span>. This number does go on the bottom of the fraction, and what goes on top is the size of the event. Break up the event into independent events 1. choose the 2 defective bulbs, and 2. choose the remaining 8 bulbs. I don't have much choice in event 1. There is only one way to choose both of the defective balls. In other words, <span><span>(<span>22</span>)</span><span>(<span>22</span>)</span></span> (choosing 2 defective bulbs from a set of 2 defective bulbs). For event 2, there are <span><span>24−2=22</span><span>24−2=22</span></span> nondefective bulbs, and I must choose <span>88</span> of them, so that's <span><span>(<span>228</span>)</span><span>(<span>228</span>)</span></span>. Finally, since events 1 and 2 are independent, we multiply the answers for the combined event: <span><span><span>(<span>22</span>)</span><span>(<span>228</span>)</span></span><span><span>(<span>22</span>)</span><span>(<span>228</span>)</span></span></span>
<span><span>P=<span><span><span>(<span>22</span>)</span><span>(<span>228</span>)</span></span><span>(<span>2410</span>)</span></span></span><span>P=<span><span><span>(<span>22</span>)</span><span>(<span>228</span>)</span></span><span>(<span>2410</span>)</span></span></span></span>
Or, since <span><span><span>(<span>22</span>)</span>=1</span><span><span>(<span>22</span>)</span>=1</span></span>,
<span><span>P=<span><span>(<span>228</span>)</span><span>(<span>2410</span>)</span></span></span><span>P=<span><span>(<span>228</span>)</span><span>(<span>2410</span>)</span></span></span></span>
Hope this helps!
We have to rewrite the expression so that it has no denominator.
For example:
1 / x = x^(-1)
1/8 = 8^(-1); 1/x^(4) = x^(-4); 1/y^(3) = y^(-3); 1/z = z^(-1).