Answer:
Distribute -4 to a and -5
Step-by-step explanation:
Trust me it is correct
Good luck:)
<span>If that line is parallel to one of the sides, then the statement is true.</span>
Answer:
(-2, 20)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Algebra I</u>
- Coordinates (x, y)
- Solving systems of equations using substitution/elimination
Step-by-step explanation:
<u>Step 1: Define Systems</u>
y = -7x + 6
y = -10x
<u>Step 2: Solve for </u><em><u>x</u></em>
<em>Substitution</em>
- Substitute in <em>y</em> [1st Equation]: -10x = -7x + 6
- [Addition Property of Equality] Add 7x on both sides: -3x = 6
- [Division Property of Equality] Divide -3 on both sides: x = -2
<u>Step 3: Solve for </u><em><u>y</u></em>
- Substitute in <em>x </em>[2nd Equation]: y = -10(-2)
- Multiply: y = 20
It would be associative property because the order of the numbers stayed the same
Answer:
x = 10°
Step-by-step explanation:
a). Since, opposite angles of a cyclic quadrilateral are supplementary angles"
Therefore, in cyclic quadrilateral ABDE,
m∠ABD + m∠AED = 180°
110° + m∠AED = 180°
m∠AED = 180° - 110°
= 70°
b). AD = ED [Given]
m∠EAD = m∠AED [Since, opposite angles of equal sides are equal in measure]
m∠EAD = m∠AED = 70°
By triangle sum theorem in ΔABD,
m∠BAD + m∠ABD + m∠ADB = 180°
m∠BAD + 110° + 40° = 180°
m∠BAD = 180 - 150
= 30°
m∠AEB = m∠AED + m∠DAB [By angles addition postulate]
m∠AEB = 70° + 30°
= 100°
By triangle sum theorem in the large triangle,
x° + m∠AEB + m∠EAB = 180°
x° + 100° + 70° = 180°
x = 180 - 170
x = 10°