Answer:
<h3>Step 4</h3>
Step-by-step explanation:
Given the expression 7+(-2)
Let 7 be 7 positive tiles since it is a positive number
Let -2 be 2 negative tiles being a negative number
7+(-2) = 7 positive tiles <em>and</em> 2 negative tiles
note that + * - will give minus sigh (-), the expression will become:
7+(-2) = 7-2
7-2 = 5
Hence the expression gives 5 positive tiles not 2 positive tiles according to Jillian calculations in step 4.
Hence Jillian made an error in step 4
Answer:
P" is then (-3, 2).
Step-by-step explanation:
If the point P(-6, 4) is translated 3 units to the right, the x-coordinate increases by 3 from -6 to -3 and the y-coordinate decreases 2 units from 4 to 2.
P" is then (-3, 2).
Answer:
b
Step-by-step explanation:
Answer:
yes .
Step-by-step explanation:
yes because the 7 percent is less than 2 dollars (1.4) , so her 20 dollars will be enough .
Looking at this problem in the book, I'm guessing that you've been
introduced to a little bit of trigonometry. Or at least you've seen the
definitions of the trig functions of angles.
Do you remember the definition of either the sine or the cosine of an angle ?
In a right triangle, the sine of an acute angle is (opposite side) / (hypotenuse),
and the cosine of an acute angle is (adjacent side) / (hypotenuse).
Maybe you could use one of these to solve this problem, but first you'd need to
make sure that this is a right triangle.
Let's see . . . all three angles in any triangle always add up to 180 degrees.
We know two of the angles in this triangle ... 39 and 51 degrees.
How many degrees are left over for the third angle ?
180 - (39 + 51) = 180 - (90) = 90 degrees for the third angle.
It's a right triangle ! yay ! We can use sine or cosine if we want to.
Let's use the 51° angle.
The cosine of any angle is (adjacent side) / (hypotenuse) .
'BC' is the side adjacent to the 51° angle in the picture,
and the hypotenuse is 27 .
cosine(51°) = (side BC) / 27
Multiply each side of that equation by 27 :
Side-BC = (27) times cosine(51°)
Look up the cosine of 51° in a book or on your calculator.
Cosine(51°) = 0.62932 (rounded)
<u>Side BC</u> = (27) x (0.62932) = <u>16.992</u> (rounded)
============================================
You could just as easily have used the sine of 39° .
That would be (opposite side) / (hypotenuse) ... also (side-BC) / 27 .