1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lys-0071 [83]
3 years ago
15

What is the factored form of the quadratic equation y=x2+4x-12? PLEASE HELP ME!!!

Mathematics
2 answers:
Volgvan3 years ago
6 0

Answer:

y = (x + 6)(x - 2).

Step-by-step explanation:

y = x^2 + 4x - 12

We need 2 numbers whose product is -12 and whose sum = +4.

These are + 6 and -2 so the factors are:

(x + 6)(x - 2).

snow_tiger [21]3 years ago
4 0

Answer:

(x + 6)(x - 2)

Step-by-step explanation:

The given quadratic equation is $ y = x^2 + 4x - 12 $.

A quadratic equation can be factored in the form $ (x - a) (x - b) $ where $ -a $ and $ -b $ will form the roots of the equation

Here the roots are $ - 6 $ and $ 2 $.

The factored form would simply be: $ (x + 6) (x - 2) = 0 $.

Thus the answer.

You might be interested in
Whats 8-4 I would like to know
deff fn [24]

Answer:

4

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
At Pages Aplenty book store, the more books you buy, the more books you get! With the special deal, a customer gets 2 free books
Sergio039 [100]

Answer: 6

Step-by-step explanation:

2 free books7 purchased books=? free books21 purchased booksCompare the denominators.2 free books7purchased books=? free books21purchased booksTo get from 7 to 21, multiply by 3. Multiply the numerator and denominator by 3 to find the number of free books Larry got.2 free books37 purchased books3=6free books21 purchased booksLarry got 6 free books

4 0
2 years ago
Solve the system.
anyanavicka [17]
X= -2
Y= -1
Z= 1
You may use solve this problem by substituting the values as well. If everything goes wrong , go for Cramer’s rule
3 0
3 years ago
a dining room table and chairs are priced at $869. Mrs. Brown has a coupon for $75 off the original price. If the tax on the sal
Arada [10]
869 * .08 = 69.52
69.52 + 869 = 938.52
938.52- 75 =  863.52

7 0
3 years ago
Read 2 more answers
P(x) = x + 1x² – 34x + 343<br> d(x)= x + 9
Feliz [49]

Answer:

x=\frac{9}{d-1},\:P=\frac{-297d+378}{\left(d-1\right)^2}+343

Step-by-step explanation:

Let us start by isolating x for dx = x + 9.

dx - x = x + 9 - x > dx - x = 9.

Factor out the common term of x > x(d - 1) = 9.

Now divide both sides by d - 1 > \frac{x\left(d-1\right)}{d-1}=\frac{9}{d-1};\quad \:d\ne \:1. Go ahead and simplify.

x=\frac{9}{d-1};\quad \:d\ne \:1.

Now, \mathrm{For\:}P=x+1x^2-34x+343, \mathrm{Subsititute\:}x=\frac{9}{d-1}.

P=\frac{9}{d-1}+1\cdot \left(\frac{9}{d-1}\right)^2-34\cdot \frac{9}{d-1}+343.

Group the like terms... 1\cdot \left(\frac{9}{d-1}\right)^2+\frac{9}{d-1}-34\cdot \frac{9}{d-1}+343.

\mathrm{Add\:similar\:elements:}\:\frac{9}{d-1}-34\cdot \frac{9}{d-1}=-33\cdot \frac{9}{d-1} > 1\cdot \left(\frac{9}{d-1}\right)^2-33\cdot \frac{9}{d-1}+343.

Now for 1\cdot \left(\frac{9}{d-1}\right)^2 > \mathrm{Apply\:exponent\:rule}: \left(\frac{a}{b}\right)^c=\frac{a^c}{b^c} > \frac{9^2}{\left(d-1\right)^2} = 1\cdot \frac{9^2}{\left(d-1\right)^2}.

\mathrm{Multiply:}\:1\cdot \frac{9^2}{\left(d-1\right)^2}=\frac{9^2}{\left(d-1\right)^2}.

Now for 33\cdot \frac{9}{d-1} > \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} > \frac{9\cdot \:33}{d-1} > \frac{297}{d-1}.

Thus we then get \frac{9^2}{\left(d-1\right)^2}-\frac{297}{d-1}+343.

Now we want to combine fractions. \frac{9^2}{\left(d-1\right)^2}-\frac{297}{d-1}.

\mathrm{Compute\:an\:expression\:comprised\:of\:factors\:that\:appear\:either\:in\:}\left(d-1\right)^2\mathrm{\:or\:}d-1 > This\: is \:the\:LCM > \left(d-1\right)^2

\mathrm{For}\:\frac{297}{d-1}:\:\mathrm{multiply\:the\:denominator\:and\:numerator\:by\:}\:d-1 > \frac{297}{d-1}=\frac{297\left(d-1\right)}{\left(d-1\right)\left(d-1\right)}=\frac{297\left(d-1\right)}{\left(d-1\right)^2}

\frac{9^2}{\left(d-1\right)^2}-\frac{297\left(d-1\right)}{\left(d-1\right)^2} > \mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}> \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}

\frac{9^2-297\left(d-1\right)}{\left(d-1\right)^2} > 9^2=81 > \frac{81-297\left(d-1\right)}{\left(d-1\right)^2}.

Expand 81-297\left(d-1\right) > -297\left(d-1\right) > \mathrm{Apply\:the\:distributive\:law}: \:a\left(b-c\right)=ab-ac.

-297d-\left(-297\right)\cdot \:1 > \mathrm{Apply\:minus-plus\:rules} > -\left(-a\right)=a > -297d+297\cdot \:1.

\mathrm{Multiply\:the\:numbers:}\:297\cdot \:1=297 > -297d+297 > 81-297d+297 > \mathrm{Add\:the\:numbers:}\:81+297=378 > -297d+378 > \frac{-297d+378}{\left(d-1\right)^2}

Therefore P=\frac{-297d+378}{\left(d-1\right)^2}+343.

Hope this helps!

5 0
3 years ago
Other questions:
  • Solve the equation for the letter d: C = pi times d
    8·2 answers
  • In one year three awards (research, teaching, and service) will be given to a class of 25 graduate students in a specific depart
    8·1 answer
  • Use repeated sustraction or a number line to solve​
    7·1 answer
  • Im confused with Direct Variation can some help me?
    15·1 answer
  • Least to greatest in order 1/2 , -1/2 , -1/3 , 1/3​
    13·2 answers
  • Point E is on line segment DF. Given DE=9 and DF=11, determine the length EF.
    14·1 answer
  • ILL GIVE BRAINLIEST TO THE FIRST PERSON TO ANSWER THIS
    5·1 answer
  • Need help with thiss guys!!!
    12·1 answer
  • Does anyone know how to do this ?
    10·1 answer
  • What is the solution to this system of linear equations?
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!