
<h3><u>Given </u><u>:</u><u>-</u></h3>
- <u>We </u><u>have </u><u>given </u><u>in </u><u>the </u><u>question </u><u>that</u><u>, </u><u> </u><u>Robin </u><u>is </u><u>flying </u><u>a </u><u>kite</u><u>. </u>
- <u>She </u><u>ties </u><u>the </u><u>5</u><u>0</u><u> </u><u>foot </u><u>kite </u><u>string </u><u>to </u><u>the </u><u>ground </u><u>.</u>
- <u>The</u><u> </u><u>kite </u><u>is </u><u>flying </u><u>at </u><u>4</u><u>0</u><u> </u><u>feet </u><u>high </u>
<h3><u>To </u><u>Find </u><u>:</u><u>-</u></h3>
- <u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>measure </u><u>of </u><u>the </u><u>angle </u><u>the </u><u>string </u><u>forms </u><u>with </u><u>the </u><u>group </u><u>that </u><u>is </u><u>angle </u><u>of </u><u>elevation</u><u>. </u>
<h3><u>Let's </u><u>Begin </u><u>:</u><u>-</u></h3>
<u>According </u><u>to </u><u>the </u><u>given</u><u> </u><u>question</u><u>, </u>
- Hypotenuse AC ( Distance of string from the ground) = 50 ft.
- Perpendicular height AB ( Distance of the kite from the ground) = 40 ft.
<h3><u>Therefore</u><u>, </u></h3>
<u>By </u><u>using </u><u>trigonometric </u><u>ratios</u><u>,</u><u> </u>
{ 

}
<u>The </u><u>Angle </u><u>of </u><u>elevation </u><u>will </u><u>be </u>
<u>[</u><u> </u><u>The </u><u>angle </u><u>that </u><u>is </u><u>formed </u><u>between </u><u>the </u><u>line </u><u>of </u><u>sight </u><u>and </u><u>base </u><u>of </u><u>the </u><u>triangle </u><u>is </u><u>called </u><u>angle </u><u>of </u><u>elevation </u><u>]</u>





Hence, The measure of the angle the string forms with the ground is 45.83° .
Answer:
200
Step-by-step explanation:
It is given that the same player is going to play a game one after another continuously about 200 times. During the game the player is going to pick up black color balls.
If the player picks at least one black color ball at one time of the game, therefore, the probability of the number of black balls that the player is going to pick is 200 balls.
Answer:
The answer is A.
Step-by-step explanation:
You have to use the formula of volume of cone,

Given that the diameter of cone is 10 units so the radius is 5. Then substitute the followung values into the formula :
Let r = 5 units,
Let h = 45 units,


