This might be wrong, but you need to get x be itself on the left side and then after you do that, the x on both sides will cancel. Whenever you try to subtract one x from the other it will cancel them. So technically that's all you can do.
Answer:
<em>x = 4</em>
Step-by-step explanation:
2(8x) = 64
<em>x = 4</em>
Answer:
15
Step-by-step explanation:
Please correct me if I'm wrong
Answer:
<h3>Therefore the sum if the series is 15.98!</h3>
The common ratio is 1/2 or 0.5 . If you multiply the current term by the the common ratio the the output will be the next term.
8⋅1/2=4
4⋅1/2=2
2⋅1/2=1 etc ...
because the absolute value of r is less than 1 we can use the following formula.
a/1−r where a is the first term and r is the common ratio
In our problem
a=8 and r=0.5
Substitute
8/1−0.5=8/0.5=16
The sum of this infinite geometric series is 16.
Also, another formula you can use that is guaranteed to work every time, no matter what, is:
Sn=a(r^n−1/r−1)
All the variables work the same way as above, and "n" is the number of terms in the series. So, say you wanted to find the sum of the first 10 terms and were to substitute everything in:
S10=8(0.5^10−1/0.5−1)
S10=15.984375
Therefore the sum if the series is 15.98!
Step-by-step explanation:
<h2>Hope it is helpful....</h2>