1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Strike441 [17]
4 years ago
11

What are the co-vertices of the following graph?

Mathematics
1 answer:
Allushta [10]4 years ago
3 0

Answer:

  (±1, -2)

Step-by-step explanation:

The co-vertices are the end points of the minor axis. The center is at (0, -2) and the minor axis is 2 units long, so the co-vertices are ...

  (-1, -2) and (1, -2)

You might be interested in
Solve for x round your answer to the nearest tenth
Citrus2011 [14]

Answer:

57.9

Step-by-step explanation:

4 0
3 years ago
Evaluate the integral by making an appropriate change of variables.
VARVARA [1.3K]

By inspecting the integrand, the "obvious" choice for substitution would be

<em>u</em> = <em>y</em> + <em>x</em>

<em>v</em> = <em>y</em> - <em>x</em>

<em />

Solving for <em>x</em> and <em>y</em>, we would have

<em>x</em> = (<em>u</em> - <em>v</em>)/2

<em>y</em> = (<em>u</em> + <em>v</em>)/2

in which case the Jacobian and its determinant are

J=\begin{bmatrix}x_u&x_v\\y_u&y_v\end{bmatrix}=\dfrac12\begin{bmatrix}1&-1\\1&1\end{bmatrix}\implies|\det J|=\left|\dfrac12\right|=\dfrac12

The trapezoid <em>R</em> has two of its edges on the lines <em>x</em> + <em>y</em> = 8 and <em>x</em> + <em>y</em> = 9, so right away, we have 8 ≤ <em>u</em> ≤ 9.

Then for <em>v</em>, we observe that when <em>x</em> = 0 (the lowest edge of <em>R</em>), <em>v</em> = <em>y</em> ; similarly, when <em>y</em> = 0 (the leftmost edge of <em>R</em>), <em>v</em> = -<em>x</em>. So

-<em>x</em> ≤ <em>v</em> ≤ <em>y</em>

-(<em>u</em> - <em>v</em>)/2 ≤ <em>v</em> ≤ (<em>u</em> + <em>v</em>)/2

-<em>u</em> + <em>v</em> ≤ 2<em>v</em> ≤ <em>u</em> + <em>v</em>

-<em>u</em> ≤ <em>v</em> ≤ <em>u</em>

<em />

So, the integral becomes

\displaystyle\iint_R5\cos\left(7\frac{y-x}{y+x}\right)\,\mathrm dA=\int_8^9\int_{-u}^u\frac52\cos\left(\frac{7v}u\right)\,\mathrm dv\,\mathrm du

=\displaystyle\frac52\int_8^9\frac u7(\sin7-\sin(-7))\,\mathrm du

=\displaystyle\frac57\sin7\int_8^9u\,\mathrm du

=\displaystyle\frac5{14}\sin7(9^2-8^2)=\boxed{\frac{85}{14}\sin7}

4 0
3 years ago
How can I learn to round better in math
love history [14]
I have always followed an easy rule: "five or more raises the score". What it means is if the number is 5 or more, it goes to the next whole. Make sense?
3 0
3 years ago
Read 2 more answers
Can someone answer this question please?
Keith_Richards [23]

Answer:b=2.5555555555...

Step-by-step explanation:9b= -23, 9b/9=b, -23/9=2.55555..., b=2.55555...

6 0
3 years ago
Could you help me answer this question
Alexandra [31]

Answer:

Statement 4 in true.

Step-by-step explanation:

1. f(-2)=(-3*(-2)+2)^2+(-2)=(6+2)^2+(-2)=8^2-2=62, FALSE

2. f(-5)=(-3*(-5)+2)^2+(-5)=(15+2)^2+(-5)=17^2+(-5)=289-5=284, FALSE

3. f(3)=(-3*3+2)^2+3=(-9+2)^2+3=(-7)^2+3=49+3=52, FALSE

4. f(5)=(-3*5+2)^2+5=(-15+2)^2+5=(-13)^2+5=169+5=174, TRUE

8 0
3 years ago
Read 2 more answers
Other questions:
  • (10times6)+((17-4)times6)
    11·2 answers
  • Write a fraction to a decimal
    7·1 answer
  • Find the value of x. 2(x-3)-17=13-3(x+2)
    8·2 answers
  • The elevation of city A is 96 feet below sea level; the elevation of city C is 25 feet below sea level. The elevation of city D
    15·1 answer
  • Use a common denominator to write equivalent fractions with like denominators. Write in simplest form. 7 2/5 + 4 3/4
    6·2 answers
  • -88 = 5y-13solve this
    10·2 answers
  • How long would it take to fill up 480cm3 pool at 25litres a min
    10·1 answer
  • I need help asap I'll give brainliest
    11·1 answer
  • Nina ran 2.5 miles in 20 minutes at the same pace how long would it take her to run 6 miles
    14·2 answers
  • Question 3
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!