Given:
The vertex of a quadratic function is (4,-7).
To find:
The equation of the quadratic function.
Solution:
The vertex form of a quadratic function is:
...(i)
Where a is a constant and (h,k) is vertex.
The vertex is at point (4,-7).
Putting h=4 and k=-7 in (i), we get


The required equation of the quadratic function is
where, a is a constant.
Putting a=1, we get

![[\because (a-b)^2=a^2-2ab+b^2]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%28a-b%29%5E2%3Da%5E2-2ab%2Bb%5E2%5D)
Therefore, the required quadratic function is
.
C. $3.00
To find how many bananas you get for a dollar, do 12/2.4 to get 5 bananas per dollar. Since you want to find how much it costs for 15 bananas, you'll do 15/5, which gives you $3
:)
The two points are (-4, -2) and (4, 5) and the equation of the line is 8y = 7x + 12 passing through the two points.
<h3>What is geometric transformation?</h3>
It is defined as the change in coordinates and the shape of the geometrical body. It is also referred to as a two-dimensional transformation. In the geometric transformation, changes in the geometry can be possible by rotation, translation, reflection, and glide translation.
We have a quadrilateral ABCD which is reflected over a line and formed a mirror image A'B'C'D' of the quadrilateral.
From the graph:
The two points are (-4, -2) and (4, 5)
The line equation passing through two points:
[y - 5] = (5+2)/(4+4)[x - 4]
y - 5 = 7/8[x - 4]
8y - 40 = 7x - 28
8y = 7x + 12
Thus, the two points are (-4, -2) and (4, 5) and the equation of the line is 8y = 7x + 12 passing through the two points.
Learn more about the geometric transformation here:
brainly.com/question/16156895
#SPJ1
Answer:
<h3>The answer is - 6</h3>
Step-by-step explanation:
f(X)=3x-12
To find f(2) substitute the value in the bracket which is 2 into f(x)
That's
f(2) = 3(2) - 12
= 6 - 12
= - 6
Hope this helps you
<u><em>Answer:</em></u>
y^2 = 28x
<em><u>Step-by-step explanation:</u></em>
Since the directrix is horizontal, use the equation of a parabola that opens left or right.
(y−k)^2 = 4p(x−h)
Find the vertex.
(0,0)
Find the distance from the focus to the vertex.
p = 7
Substitute in the known values for the variables into the equation
(y−k)^2 = 4p(x−h).
(y−0)^2 = 4(7)(x−0)
Simplify.
<em>y^2 = 28x</em>