Answer:
Assuming it is a square with side length 3.2 then the area is:
10.24 units squared
Step-by-step explanation:
Assuming the figure s a square with sides 3.2 by 3.2 then the area is found by multiplying the sides.
3.2 * 3.2 = 10.24 units squared
To determine how many acres would minimize cost, we need to differentiate the expression given and set it to zero and obtain the value of x. We do as follows:
C(x) = 0.2x^2 - 12x +240
C'(x) = 0.4x - 12
0 = 0.4x - 12
x = 30 acres <---------amount of flowers needed to minimize cost
Answer:
Compound interest is the addition of interest to the principal sum of a loan or deposit, or in other words, interest on interest. It is the result of reinvesting interest, rather than paying it out, so that interest in the next period is then earned on the principal sum plus previously accumulated interest
Step-by-step explanation:
Please mark as brainliest
Answer:
The expected number of minutes the rat will be trapped in the maze is 21 minutes.
Step-by-step explanation:
The rat has two directions to leave the maze.
The probability of selecting any of the two directions is,
.
If the rat selects the right direction, the rat will return to the starting point after 3 minutes.
If the rat selects the left direction then the rat will leave the maze with probability
after 2 minutes. And with probability
the rat will return to the starting point after 5 minutes of wandering.
Let <em>X</em> = number of minutes the rat will be trapped in the maze.
Compute the expected value of <em>X</em> as follows:
![E(X)=[(3+E(X)\times\frac{1}{2} ]+[2\times\frac{1}{6} ]+[(5+E(X)\times\frac{2}{6} ]\\E(X)=\frac{3}{2} +\frac{E(X)}{2}+\frac{1}{3}+\frac{5}{3} +\frac{E(X)}{3} \\E(X)-\frac{E(X)}{2}-\frac{E(X)}{3}=\frac{3}{2} +\frac{1}{3}+\frac{5}{3} \\\frac{6E(X)-3E(X)-2E(X)}{6}=\frac{9+2+10}{6}\\\frac{E(X)}{6}=\frac{21}{6}\\E(X)=21](https://tex.z-dn.net/?f=E%28X%29%3D%5B%283%2BE%28X%29%5Ctimes%5Cfrac%7B1%7D%7B2%7D%20%5D%2B%5B2%5Ctimes%5Cfrac%7B1%7D%7B6%7D%20%5D%2B%5B%285%2BE%28X%29%5Ctimes%5Cfrac%7B2%7D%7B6%7D%20%5D%5C%5CE%28X%29%3D%5Cfrac%7B3%7D%7B2%7D%20%2B%5Cfrac%7BE%28X%29%7D%7B2%7D%2B%5Cfrac%7B1%7D%7B3%7D%2B%5Cfrac%7B5%7D%7B3%7D%20%2B%5Cfrac%7BE%28X%29%7D%7B3%7D%20%5C%5CE%28X%29-%5Cfrac%7BE%28X%29%7D%7B2%7D-%5Cfrac%7BE%28X%29%7D%7B3%7D%3D%5Cfrac%7B3%7D%7B2%7D%20%2B%5Cfrac%7B1%7D%7B3%7D%2B%5Cfrac%7B5%7D%7B3%7D%20%5C%5C%5Cfrac%7B6E%28X%29-3E%28X%29-2E%28X%29%7D%7B6%7D%3D%5Cfrac%7B9%2B2%2B10%7D%7B6%7D%5C%5C%5Cfrac%7BE%28X%29%7D%7B6%7D%3D%5Cfrac%7B21%7D%7B6%7D%5C%5CE%28X%29%3D21)
Thus, the expected number of minutes the rat will be trapped in the maze is 21 minutes.