1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
chubhunter [2.5K]
3 years ago
6

What is 230% pf 46 ? Explain :)

Mathematics
2 answers:
34kurt3 years ago
6 0
To get 230% of 46 you multiply 46 * 230% and your answer is 105.8

Hope this helps :)
Gemiola [76]3 years ago
3 0
To work this out, what we do is simply multiple 46 by our multiplier for 230% which is 0.230.
46 x 0.230 = 105.8
You might be interested in
Help me please! And quick! It's 7th grade level math...
Mademuasel [1]

Answer:

Number 5 is 10 pencils left in total(5 red, 5 blue) with 50 percent probability of getting red or blue. Number 6 is 9 left total (4 red, 5 blue) with a 44 percent probability of choosing a red one, 56 percent probability of choosing a blue one

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
Alex wants to make a fleece blanket to cheer up her friend. One yard of material cost $3.90. If Alex wants to purchase 3.5 yards
Sedbober [7]
The correct answer is A

Hope this helped :)
5 0
3 years ago
Read 2 more answers
Look at the system of equations below.
Annette [7]

Answer:

Substitution and graphing are less efficient methods than elimination for this system as there is extra amount of steps we have to take to solve the same system of equations - hence time consuming and a margin or error may happen. Therefore, elimination is the suitable method for solving this system.

Step-by-step explanation:

Let us consider the system of equation below.

4x-5y=3

3x+5y=13

Elimination method sounds the most appropriate option to solve the given system of equations as we can easily sort out an equation in one variable x in minimal steps by just adding the both equations as the y-coefficient in the first equation is the opposite of the y-coefficient in the second equation, and we can determine an equation in one variable x.

Adding both equations will eliminate the y-variable and we can easily sort out the value of x from the resulting equation.

As the given system of equation

4x-5y=3......[1]

3x+5y=13......[2]

Adding Equation 1 and Equation 2

4x-5y+3x+5y=3+13

7x=16

x=\frac{16}{7}

Putting x=\frac{16}{7} in Equation [1]

4x-5y=3......[1]

y=\frac{43}{35}

Although substitution or graphing methods can also be used to bring the solution of the given system of equations, but using substitution or graphing method can be sometimes cumbersome or time-consuming as it would have to take some additional steps to solve the system.

For example, if we would have to use the substitution methods to solve the given system of equations, first we would have to solve one of the equations by choosing one of the equation for one of the chosen variables and then putting this back into the other equation, and solve for the other, and then back-solving for the first variable.

As the given system of equation

4x-5y=3......[1]

3x+5y=13......[2]

Solving the equation 2 for x variable

3x=13-5y

x=\frac{13-5y}{3}

Plugging x=\frac{13-5y}{3} in equation [1]

4(\frac{13-5y}{3}) -5y=3

y = \frac{43}{35}

Putting y = \frac{43}{35} in Equation 2

3x+5y=13......[2]

x = \frac{16}{7}

So, you can figure out, we have to make additional steps when we use substitution method to solve this system of equations.

Similarly, using graphing method, it would take a certain time before we identify the solution of the system.

Hence, from all the discussion and analysis we did, we can safely say that substitution and graphing are less efficient methods than elimination for this system as there is extra amount of steps we have to take to solve the same system of equations - hence time consuming and a margin or error may happen.

Therefore, we agree with the student argument that Elimination is the best method for solving this system because the y-coefficient in the first equation is the opposite of the y-coefficient in the second equation.

Keywords: substitution method, system of equations, elimination method

Lear more about elimination method of solving the system of equation from brainly.com/question/12938655

#learnwithBrainly

4 0
3 years ago
PLEASE HELP ASAP PLEASE ANSWER CORRECTLY WILL GET BRAINLIEST
Xelga [282]

Answer:

True

Step-by-step explanation:

Each x input has 1 y output

5 0
3 years ago
Read 2 more answers
Determine the domain of the graph
ss7ja [257]

Answer:

The answer is B

Step-by-step explanation:

Graph goes positive infinitily,

but is inclusive of -4 and up.

7 0
3 years ago
Other questions:
  • Help me find the value of the missing variable
    11·2 answers
  • The list below shows the number of rides at nine different rodeos. What is the median number of rides at these rodeos?
    6·2 answers
  • The formula V = IR shows the relationship between voltage, current, and resistance. Solve this formula for R.
    10·1 answer
  • Chen wants to buy a pair of pants that regularly cost $54 . Today, the pants are on sale for 60% of the original price.
    8·1 answer
  • Which triangle’s area would be calculated using the trigonometric area formula?
    14·2 answers
  • What is the value of negative one over four subtracted by one over two divided by negativitie four over seven
    10·1 answer
  • Overnight, the temperature dropped 1.3 degrees every hour. How many hours did it take the temperature to drop 7.8 degrees?
    5·1 answer
  • Has endpoints J(13, 8) and K(–6, –6). Find the coordinates of the midpoint of .
    12·1 answer
  • Pleaseeee helpppppppppp
    13·1 answer
  • I need food to live, but if I eat dirt, I die. I am all-powerful, but I shrink back at the sight of water. What am I?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!