72*12 = 2*2*2*2*2*3*3*3 = 2^5*3^3
Answer:
u can make it a fraction
Step-by-step explanation:
Answer:
Part 1) The explanatory variable is the type of oven
It is a categorical variable
Part 2) The response variable is the baking time
It is a quantitative variable
part 3) two-sample z-test for proportions should be used for the test
Step-by-step explanation:
An explanatory variable is an independent variable that is not affected by all other variables. In this experiment, the type of oven is the input variable and it is not affected by any other variable
A categorical variable is one that has two or more categories without any intrinsic ordering of the categories. The type of oven is either gas or electric, so it is categorical.
A response variable is a dependent variable whose variation depends on other variables. The baking time in this experiment depends on the type of oven used
A quantitative variable is one that take on numerical values.
A two proportion z-test allows you to compare two proportions to see if they are the same. The null hypothesis (H0) for the test is that the proportions are the same. The alternate hypothesis (H1) is that the proportions are not the same.
<u><em>Answer:</em></u>
Part a .............> x = 11
Part b .............> k = 57.2
Part c .............> y = 9.2
<u><em>Explanation:</em></u>
The three problems deal with inverse variation between two variables
An inverse variation relation between two variables means that when one of the variables increases, the other will decrease (and vice versa)
<u>Mathematically, an inverse variation relation is represented as follows:</u>
where x and y are the two variables and k is the constant of variation
<u><em>Now, let's check the givens:</em></u>
<u>Part a:</u>
We are given that y = 3 and k = 33
<u>Substitute in the original relation and solve for x as follows:</u>
<u>Part b:</u>
We are given that y = 11 and x = 5.2
<u>Substitute in the original relation and solve for k as follows:</u>
<u>Part c:</u>
We are given that x=7.8 and k=72
<u>Substitute in the original relation and solve for y as follows:</u>
to the nearest tenth
Hope this helps :)
Answer:
C AND D
Step-by-step explanation:
AP EX Confirmed