1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slavikrds [6]
4 years ago
5

How do I solve this? Can you show me step by step process.

Mathematics
1 answer:
tiny-mole [99]4 years ago
8 0
(Q14) To find the equation when given the gradient and one set of points (or coordinates), you have to solve for <em>b. </em>
1. Identify the gradient and x- and y- intercepts. 
    m=3, x=1, y=5
2. Substitute them into the equation, y=mx+b. 
    5=3(1) + b 
3. Solve for <em>b.</em>
    5=3 + b 
    b=2 
4. Rewrite the equation. 
   y=3x+ 2
(Q15) To find the equation when given two sets of points, you need to.
1. Find the gradient, using the formula, (x2-x1 / y2-y1) 
   (7,5) and (4, -7)
    x1=7, x2= 4, y1=5, y2=-7
    4-7/-7-5 = -3/-12 = 1/4 
   Therefore, gradient = 1/4 
2. Substitute with one set of points (can be either (7,5) or (4,-7) in this example - question 15) into the equation, (like you did in question 14) 
  a) Identify the gradient and x- and y- intercepts. 
   m=1/4, x=7, y=5
  b) Solve for <em>b</em>. 
   5=1/4(7) + <em></em>b
   5=7/4 + b 
   b=13/4 or 3 1/4 
  c) Rewrite the equation.
   y=1/4x + 13/4
You might be interested in
Frankie factored the expression ls 14m + 21pm - 35mq as 7(2m + 3pm - 5mq) . She thinks she has factored out the greatest common
shtirl [24]

Answer:

Disagree, as m is common to all terms of the expression and thus, can be factored. The factored expression is 7m(2 + 3p - 5q)

Step-by-step explanation:

If a variable is common to all terms of an expression, it can be factored.

14m + 21pm - 35mq

Here, m is common to all terms of the expression, so the factored expression is:

7m(\frac{14m}{7m} + \frac{21pm}{7m} - \frac{35mq}{7m}) = 7m(2 + 3p - 5q)

Disagree, as m is common to all terms of the expression and thus, can be factored. The factored expression is 7m(2 + 3p - 5q)

7 0
3 years ago
100 points for right answer Identify the correct explanation for why the triangles are similar. Then find SQ and TP.
STALIN [3.7K]

Answer:

Second one

Step-by-step explanation:

They have one angle (R) in common

Also,

Angles T & S and P & Q are equal because they are corresponding angles.

RS/RT = SQ/TP

4/(4+4) = 2x/(x+6)

4x = x + 6

3x = 6

x = 2

SQ = 2(2) = 4

TP = 2 + 6 = 8

8 0
4 years ago
The area of a rectangle is 48x®y7
Jlenok [28]

Answer:

D

Step-by-step explanation:

Remember, area equals width x height so you can set up this equation.

48x^8y^7=6x^2y^4 * w

Solving for w,

\frac{48x^8y^7}{6x^2y^4} =w

Simplifying,

8x^6y^3

Thus, D is the answer

7 0
3 years ago
Use the form of the definition of the integral given in the theorem to evaluate the integral. ∫ 0 − 2 ( 7 x 2 + 7 x ) d x
Murrr4er [49]

Answer:

\int _{-2}^07x^2+7xdx=\frac{14}{3}

Step-by-step explanation:

The definite integral of a continuous function <em>f</em> over the interval [a,b] denoted by \int\limits^b_a {f(x)} \, dx, is the limit of a Riemann sum as the number of subdivisions approaches infinity. That is,

\int\limits^b_a {f(x)} \, dx=\lim_{n \to \infty} \sum_{i=1}^{n}\Delta x \cdot f(x_i)

where \Delta x = \frac{b-a}{n} and x_i=a+\Delta x\cdot i

To evaluate the integral

\int\limits^{0}_{-2} {7x^{2}+7x } \, dx

you must:

Find \Delta x

\Delta x = \frac{b-a}{n}=\frac{0+2}{n}=\frac{2}{n}

Find x_i

x_i=a+\Delta x\cdot i\\x_i=-2+\frac{2i}{n}

Therefore,

\lim_{n \to \infty}\frac{2}{n} \sum_{i=1}^{n} f(-2+\frac{2i}{n})

\int\limits^{0}_{-2} {7x^{2}+7x } \, dx=\lim_{n \to \infty}\frac{2}{n} \sum_{i=1}^{n} 7(-2+\frac{2i}{n})^{2} +7(-2+\frac{2i}{n})

\lim_{n \to \infty}\frac{2}{n} \sum_{i=1}^{n} 7(-2+\frac{2i}{n})^{2} +7(-2+\frac{2i}{n})\\\\\lim_{n \to \infty}\frac{2}{n} \sum_{i=1}^{n} 7[(-2+\frac{2i}{n})^{2} +(-2+\frac{2i}{n})]\\\\\lim_{n \to \infty}\frac{14}{n} \sum_{i=1}^{n} (-2+\frac{2i}{n})^{2} +(-2+\frac{2i}{n})\lim_{n \to \infty}\frac{14}{n} \sum_{i=1}^{n} (-2+\frac{2i}{n})^{2} +(-2+\frac{2i}{n})\\\\\lim_{n \to \infty}\frac{14}{n} \sum_{i=1}^{n} 4-\frac{8i}{n}+\frac{4i^2}{n^2} -2+\frac{2i}{n}\\\\\lim_{n \to \infty}\frac{14}{n} \sum_{i=1}^{n} \frac{4i^2}{n^2}-\frac{6i}{n}+2

\lim_{n \to \infty}\frac{14}{n} \sum_{i=1}^{n} \frac{4i^2}{n^2}-\frac{6i}{n}+2\\\\\lim_{n \to \infty}\frac{14}{n}[ \sum_{i=1}^{n} \frac{4i^2}{n^2}-\sum_{i=1}^{n}\frac{6i}{n}+\sum_{i=1}^{n}2]\\\\\lim_{n \to \infty}\frac{14}{n}[ \frac{4}{n^2}\sum_{i=1}^{n}i^2 -\frac{6}{n}\sum_{i=1}^{n}i+\sum_{i=1}^{n}2]

We can use the facts that

\sum_{i=1}^{n}i^2=\frac{n(n+1)(2n+1)}{6}

\sum_{i=1}^{n}i=\frac{n(n+1)}{2}

\lim_{n \to \infty}\frac{14}{n}[ \frac{4}{n^2}\cdot \frac{n(n+1)(2n+1)}{6}-\frac{6}{n}\cdot  \frac{n(n+1)}{2}+2n]\\\\\lim_{n \to \infty}\frac{14}{n}[-n+\frac{2\left(n+1\right)\left(2n+1\right)}{3n}-3]\\\\\lim_{n \to \infty}\frac{14\left(n^2-3n+2\right)}{3n^2}

\frac{14}{3}\cdot \lim _{n\to \infty \:}\left(\frac{n^2-3n+2}{n^2}\right)\\\\\mathrm{Divide\:by\:highest\:denominator\:power:}\:1-\frac{3}{n}+\frac{2}{n^2}\\\\\frac{14}{3}\cdot \lim _{n\to \infty \:}\left(1-\frac{3}{n}+\frac{2}{n^2}\right)\\\\\frac{14}{3}\left(\lim _{n\to \infty \:}\left(1\right)-\lim _{n\to \infty \:}\left(\frac{3}{n}\right)+\lim _{n\to \infty \:}\left(\frac{2}{n^2}\right)\right)\\\\\frac{14}{3}\left(1-0+0\right)\\\\\frac{14}{3}

Thus,

\int _{-2}^07x^2+7xdx=\frac{14}{3}

5 0
4 years ago
Mr. Altamirano opens an account with a simple interest on an account with $1000 at 3% annually for 9 months. How much interest d
gladu [14]

Answer:

1022.50

Step-by-step explanation:

1000*.03= 30. (12mos interest)

30/4=7.50 quarterly interest

7.50x3 (9mos)= 22.50 interest

7 0
3 years ago
Other questions:
  • Please Help ASAP! Would be greatly appreciated.
    13·2 answers
  • (2.0*10^4)(3.0*10^3) <br> A. 6.0 * 10^7<br> B. 6.0 * 10^12<br> C. 6.0 * 10^5 <br> D. 6.0 * 10^43
    11·1 answer
  • Each batch of cookies requires 1/3 cup of floor how many batches of cookies can be made with 7 cups of flour
    15·1 answer
  • The number of calls coming per minute into a hotel reservation center is Poisson random variable with mean 3.
    9·1 answer
  • In a 30cm by 25cm rectangle, a quadrant of a circle of radius 7cm has been cut away from each corner. What is the perimeter of t
    7·1 answer
  • Janine made a cylindrical vase in which the sum of the lateral area and area of one base was about 3000 square centimeters. The
    14·2 answers
  • Can you please help me with number 4 please?
    10·1 answer
  • A triangle has base 2x and height x – 3. The area of the triangle is 10 square inches.
    15·1 answer
  • A population of middle school students contains 160 sixth graders, 180 seventh graders, and 140 eighth graders. Nine seventh gra
    5·1 answer
  • Clint’s salary increased from $20,000 to $32,000 over a three year period. Helen’s salary increased from 27,000 to $43,200 over
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!