Answer:
7a 3 −7a+1
Step-by-step explanation: I hope this help.
STEP
1
:
Equation at the end of step 1
((7a3 - 2a) - 2) + (3 - 5a)
STEP
2
:
Polynomial Roots Calculator :
2.1 Find roots (zeroes) of : F(a) = 7a3-7a+1
Polynomial Roots Calculator is a set of methods aimed at finding values of a for which F(a)=0
Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers a which can be expressed as the quotient of two integers
The Rational Root Theorem states that if a polynomial zeroes for a rational number P/Q then P is a factor of the Trailing Constant and Q is a factor of the Leading Coefficient
In this case, the Leading Coefficient is 7 and the Trailing Constant is 1.
The factor(s) are:
of the Leading Coefficient : 1,7
of the Trailing Constant : 1
Let us test ....
P Q P/Q F(P/Q) Divisor
-1 1 -1.00 1.00
-1 7 -0.14 1.98
1 1 1.00 1.00
1 7 0.14 0.02
Polynomial Roots Calculator found no rational roots
Final result :
7a3 - 7a + 1
He can count and there is 6.5 blocks between his house and the park
Answer:
x=6
Step-by-step explanation:
In a square, its angles are all 90 degrees. So, cutting a square in half into two triangles from corner to corner produces 45 degree angles on both sides. Since the triangles are now 45-45-90 triangles, we can use the rule where the hypotenuse of the triangle is equal to the square root of 2 times the length of either side. So, the side length is 6.
Answer:
Option 2
Step-by-step explanation:
Minimum value is going to be in the y part of our coordinate, so we can just look there. I went ahead and used a graphing calculator to make things easy.
Starting off with option 2, we can see the minimum is -10. And in option 4 we can see the smallest y value is -6.
Using a graphing calculator (I used desmos), we can graph these other functions and figure out their minimums.
Option 1's y minimum is -7, and Option 3's y minimum is -2.25.
Option 1: -7
Option 2: -10
Option 3: -2.25
Option 4: -6
The questions asks for the <em>smallest</em> minimum value, which in this case is option 2.
Answer:
180°
Step-by-step explanation:
Angles that are called straight angles make up a straight line.
A straight line measures 180°.
So, angles on a straight line make up 180°.
Hope this helps.