Answer:
P(B|A)=0.25 , P(A|B) =0.5
Step-by-step explanation:
The question provides the following data:
P(A)= 0.8
P(B)= 0.4
P(A∩B) = 0.2
Since the question does not mention which of the conditional probabilities need to be found out, I will show the working to calculate both of them.
To calculate the probability that event B will occur given that A has already occurred (P(B|A) is read as the probability of event B given A) can be calculated as:
P(B|A) = P(A∩B)/P(A)
= (0.2) / (0.8)
P(B|A)=0.25
To calculate the probability that event A will occur given that B has already occurred (P(A|B) is read as the probability of event A given B) can be calculated as:
P(A|B) = P(A∩B)/P(B)
= (0.2)/(0.4)
P(A|B) =0.5
Answer:
Step-by-step explanation:
Flip the equation 1) 8a + 2b = 2x
Subtract 2b from both sides 2)8a + 2b(-2b) =<em> 2x + (-2b)</em>
Divide by 8 on both sides 3) 8a/8 =<em> -2b - 2x/8</em>
4) a = 1/-4b + 1/4x
what is the domain of the function: {(1, 3); (3, 5); (5, 7); (7, 9)}? a. {1, 3, 5, 7, 9} b. {1, 3, 5, 7} c. {1, 9} d. {3, 5, 7,
Papessa [141]
B. 1, 3, 5, and 7 are x values. Domain is the x value.
Answer:
Step-by-step explanation:
<u>Given equation:</u>
<u>The cost of 3.5 lb of sour belts:</u>
<u>Simplify:</u>