Given an endpoint of a segment and a midpoint, the other endpoint can be obtained by manipulation of the midpoint formula. The said formula is shown below:
Let: (a,b) = coordinates of point 1 ; (c,d) = coordinates of point 2; (e,f) = coordinates of the midpoint
Midpoint = ( (a+c)/2 , (b + d)/2 )
From the formula: (a+c)/2 = e ; (b + d)/2 = f
Since we are already given an endpoint and the midpoint, we can solve for the other endpoint using the obtained equations. This is shown below:
(a+c<span>)/2 = e
</span>(3 + c)/2 = 0
c = -3
(b + d<span>)/2 = f
</span>(11 + d)/2 = 0
d = -11
Therefore, the coordinates of the other point is Q(-3,-11)
Answer:
-11, 11
Step-by-step explanation:
You have to find when the function crosses the x-axis. You could find this using algebra by solving for x in the equation but I prefer to simply graph it using something like desmos and see when it crosses the x-axis. Doing that I can see the answers would be -11 and 11
Answer:
1 C
2 G
Step-by-step explanation: