Solve for ddd.
41 =12d-741=12d−741, equals, 12, d, minus, 7
d =d=d, equals
Hint #11 / 4
Let's add and then divide to get ddd by itself.
Hint #22 / 4
\begin{aligned} 41 &=12d-7 \\ \\ 41\blue{+7} &= 12d-7\blue{+7}~~~~~~\blue{\text{add }7} \text{ to each side}\\ \\ 41\blue{+7}&=12d-\cancel{ 7} {\blue{+}\cancel{\blue{7}}}\\ \\ 41\blue{+7}&=12d\end{aligned}
41
41+7
41+7
41+7
=12d−7
=12d−7+7 add 7 to each side
=12d−
7
+
7
=12d
Hint #33 / 4
\begin{aligned}48 &= 12d \\ \\ \dfrac{48}{\pink{12}} &= \dfrac{12d}{\pink{12}} ~~~~~~~\text{divide each side by } \pink{12} \text{ to get } d \text{ by itself }\\ \\ \dfrac{48}{\pink{12}}&=\dfrac{\cancel{12}d}{\cancel{\pink{12}}} \\ \\ \dfrac{48}{\pink{12}}&=d \end{aligned}
48
12
48
12
48
12
48
=12d
=
12
12d
divide each side by 12 to get d by itself
=
12
12
d
=d
Hint #44 / 4
The answer:
d=\green{4}~~~~~~~~d=4 d, equals, start color green, 4, end color green, space, space, space, space, space, space, space, space[Okay, got it!]
\begin{aligned} 41 &=12d-7 \\\\ 41 &\stackrel{?}{=} 12(\green{4})-7 \\\\ 41 &\stackrel{?}{=} 48-7 \\\\ 41 &= 41 ~~~~~~~~~~\text{Yes!} \end{aligned}
41
41
41
41
=12d−7
=
?
12(4)−7
=
?
48−7
=41 Yes!
<em>what is 5cd when c = 3 and d = 4</em>
<em>put</em><em> </em><em>the</em><em> </em><em>value</em><em> </em><em>c</em><em>=</em><em>3</em><em> </em><em>and</em><em> </em><em>d</em><em>=</em><em>4</em><em> </em><em>then</em><em>,</em>
<em>5</em><em>cd</em><em>=</em><em> </em><em>5</em><em> </em><em>×</em><em> </em><em>3</em><em> </em><em>×</em><em> </em><em>4</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em>6</em><em>0</em><em> </em>
<em>thus</em><em> </em><em>,</em><em> </em><em>6</em><em>0</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>required</em><em> </em><em>answer</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em>
Answer:
the answer is 'undefined'
Step-by-step explanation:
Cot is defines as (cos x)/(sin x)
So we can rewrite our expression as...
(cos 180°)/(sin 180°) + (cos 180°)/(sin 180°)
or
2(cos 180°)/(sin 180°)
Cos 180° = 1, sin 180° = 0 (you get these from the unit circle)
so we have
2(1/0) = 2/0, which is undefined, because we don't divide by zero
y = 3/2x is the answer for this problem.