Answer:
The answer is 3 and (-4).
Step-by-step explanation:
We are given an equation 2x² + 2x – 24.
Let us assume that the equation is equal to zero.
2x² + 2x – 24 = 0
Now, divide whole equation by 2 we get,
x² + x – 12 = 0
x² + 4x – 3x – 12 = 0
x(x + 4) – 3(x + 4) = 0
(x – 3) (x + 4) = 0
x = 3, -4
Thus, The actual roots of f(x) are 3 and (-4).
The distance between two points on the plane is given by the formula below
![\begin{gathered} A=(x_1,y_1),B=(x_2,y_2) \\ \Rightarrow d(A,B)=\sqrt[]{(x_1-x_2)^2+(y_1-y_2)^2} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20A%3D%28x_1%2Cy_1%29%2CB%3D%28x_2%2Cy_2%29%20%5C%5C%20%5CRightarrow%20d%28A%2CB%29%3D%5Csqrt%5B%5D%7B%28x_1-x_2%29%5E2%2B%28y_1-y_2%29%5E2%7D%20%5Cend%7Bgathered%7D)
Therefore, in our case,

Thus,
![\begin{gathered} \Rightarrow d(A,B)=\sqrt[]{(-1-5)^2+(-3-2)^2}=\sqrt[]{6^2+5^2}=\sqrt[]{36+25}=\sqrt[]{61} \\ \Rightarrow d(A,B)=\sqrt[]{61} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5CRightarrow%20d%28A%2CB%29%3D%5Csqrt%5B%5D%7B%28-1-5%29%5E2%2B%28-3-2%29%5E2%7D%3D%5Csqrt%5B%5D%7B6%5E2%2B5%5E2%7D%3D%5Csqrt%5B%5D%7B36%2B25%7D%3D%5Csqrt%5B%5D%7B61%7D%20%5C%5C%20%5CRightarrow%20d%28A%2CB%29%3D%5Csqrt%5B%5D%7B61%7D%20%5Cend%7Bgathered%7D)
Therefore, the answer is sqrt(61)
In general,

Remember that

Therefore,
Quantitive since it can be counted
Answer:
I THINK IT WILL BE HELPFUL
<span>For the answer to the question above, We have a right angled triangle with an opposite of 300.5 ft. (306 - 5.5) and an adjacent of 400 ft. Recalling SOH CAH TOA, tanθ = O/A.
tan(θ) = 300.5/400.
θ = tan^-1(300.5/400).
So the answer is
θ = 36.9°.
I hope my answer helped you.</span>