The solution to the expressions given are;
9 -9t/ 12 - 5t
a. 20/ 169
b. -170/ 169
c. 386/ 169
d. -10/ 169
<h3>How to solve the expressions</h3>
Given:

We can see that both variables in the numerator and denominator have no common factor, thus cannot be factorized further
a. 
First, let's find the lowest common multiple
LCM = 169
= 
= 
= 20/ 169
b. 
The lowest common multiple is 119
= 
substract the numerator
= - 170/ 119
c. 
The lowest common multiple is 169
= 
= 386/ 169
d. 
The lowest common multiple is 169
= 
= - 10/ 169
Thus, we have the solutions to be 9 -9t/ 12 - 5t, 20/ 169, -170/ 169, 386/ 169, -10/ 169 respectively.
Learn more about LCM here:
brainly.com/question/12732917
#SPJ1
Answer:
12m²
Step-by-step explanation:
For a rectangle, with length L and width W,
the perimeter is given as
Perimeter,
P = (2 x Length) + (2 x Width)
P = 2L + 2W
It is given that the perimeter is 48, hence
48 = 2L + 2W (divide both sides by 2)
24 = L + W
or
L = 24 - W -----> eq 1
Also realize that the Area of a Rectangle is given by
A = L x W -----> eq 2
Substituting eq 1 into eq 2,
A = (24 - W) x W
A = -W² + 24W
Recall that for a quadratic equation y = ax² + bx + c, the maxima or minima is given by y(max) = -b/2a
In this case, b = 24 and a = -1
-b/2a = -24/[ 2(-1) ] = 12
Hence for A to be maximum A(max) = 12m² (Answer)
Find the value of -6(-2)^2 - 4^2 - 3(-2x^4).
-6(-2)^2 - 4^2 - 3(-2x^4)
Multiply -6(-2)^2.
12^2 - 4^2 - 3(-2x^4)
Subtract 12^2 and -4^2.
8 - 3(-2x^4)
Distribute -3(-2x^4).
8 + 6x^4
Therefore the value of 6(-2)^2 - 4^2 - 3(-2x^4) is 8 + 6x^4.
Answer:
This is the answer
Step-by-step explanation:
Draw a number line number it with negative number on the left and postive numbers at the right start at postive 6 now go to the left twice your answer should be 4