1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dimas [21]
4 years ago
12

Y′′−3y′+2y=3e^(-x)-10cos(3x)

Mathematics
1 answer:
k0ka [10]4 years ago
8 0
First, the characteristic solution. The homogeneous ODE

y''-3y'+2y=0

has characteristic equation

r^2-3r+2=(r-2)(r-1)=0

which has roots at r=2 and r=1, which means the characteristic solution is

y_c=C_1e^{2x}+C_2e^x

To find the particular solution, the method of undetermined coefficients will probably be the easiest to use. Suppose the particular solution and its derivative are

y_p=ae^{-x}+b\cos3x+c\sin3x
{y_p}'=-ae^{-x}-3b\sin3x+3c\cos3x
{y_p}''=ae^{-x}-9b\cos3x-9c\sin3x

Substituting into the ODE gives

\left(ae^{-x}-9b\cos3x-9c\sin3x\right)-3\left(-ae^{-x}-3b\sin3x+3c\cos3x\right)+2\left(ae^{-x}+b\cos3x+c\sin3x\right)=3e^{-x}-10\cos3x
6ae^{-x}+(-9b-9c+2b)\cos3x+(-9c+9b+2c)\sin3x=3e^{-x}-10\cos3x
6ae^{-x}+(-7b-9c)\cos3x+(-7c+9b)\sin3x=3e^{-x}-10\cos3x

It follows that

\begin{cases}6a=3\\-7b-9c=-10\\-7c+9b=0\end{cases}\implies a=\dfrac12,b=\dfrac7{13},c=\dfrac9{13}

So the solution is

y=y_c+y_p
y=C_1e^{2x}+C_2e^x+\dfrac12e^{-x}+\dfrac7{13}\cos3x+\dfrac9{13}\sin3x
You might be interested in
How do you simplify (4/9)²?
Vanyuwa [196]
(4/9)² = 4²/9² = 16/81 
7 0
4 years ago
Someone please help me will give BRAILIEST !!!!!!!!
marishachu [46]
Its a stop taking the medicine when you feel better! Vote me as brainlyest
3 0
4 years ago
Read 2 more answers
HELP ME PWEASEEEEEEEE!!!!!!!!!!!!!!!!1111111111111111111111111111111
babunello [35]

Answer:

3x

hope this helps

have a good day :)

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
PLEASE HELP WITH THIS!!!<br><br><br>solve for h <br><br><br>6/h+=3
seropon [69]
Your answer is h=2.
Explanation:
Divide 6 by 3
6 0
3 years ago
Divide 3/4 divided by 6
noname [10]

Answer: 1/8

░░░░░░░░░░░░░░░░░░░░░▄▀░░▌

░░░░░░░░░░░░░░░░░░░▄▀▐░░░▌

░░░░░░░░░░░░░░░░▄▀▀▒▐▒░░░▌

░░░░░▄▀▀▄░░░▄▄▀▀▒▒▒▒▌▒▒░░▌

░░░░▐▒░░░▀▄▀▒▒▒▒▒▒▒▒▒▒▒▒▒█

░░░░▌▒░░░░▒▀▄▒▒▒▒▒▒▒▒▒▒▒▒▒▀▄

░░░░▐▒░░░░░▒▒▒▒▒▒▒▒▒▌▒▐▒▒▒▒▒▀▄

░░░░▌▀▄░░▒▒▒▒▒▒▒▒▐▒▒▒▌▒▌▒▄▄▒▒▐

░░░▌▌▒▒▀▒▒▒▒▒▒▒▒▒▒▐▒▒▒▒▒█▄█▌▒▒▌

░▄▀▒▐▒▒▒▒▒▒▒▒▒▒▒▄▀█▌▒▒▒▒▒▀▀▒▒▐░░░▄

▀▒▒▒▒▌▒▒▒▒▒▒▒▄▒▐███▌▄▒▒▒▒▒▒▒▄▀▀▀▀

▒▒▒▒▒▐▒▒▒▒▒▄▀▒▒▒▀▀▀▒▒▒▒▄█▀░░▒▌▀▀▄▄

▒▒▒▒▒▒█▒▄▄▀▒▒▒▒▒▒▒▒▒▒▒░░▐▒▀▄▀▄░░░░▀

▒▒▒▒▒▒▒█▒▒▒▒▒▒▒▒▒▄▒▒▒▒▄▀▒▒▒▌░░▀▄

▒▒▒▒▒▒▒▒▀▄▒▒▒▒▒▒▒▒▀▀▀▀▒▒▒▄

7 0
3 years ago
Read 2 more answers
Other questions:
  • Kia paid $10 for two charms. The price of each charm was a multiple of $2. What are the possible prices for the charms?
    9·2 answers
  • If A(-5,7), B(-4,-5), C(-1,-6) and D(4,5) are the vertices of a quadrilateral, find the area of the quadrilateral ABCD.
    10·1 answer
  • The journal entry to close the Fees Earned, $750, and Rent Revenue, $175, accounts during the year-end closing process would inv
    7·1 answer
  • Quadrilateral ABCD has coordinates A (3, 1), B (4, 4), C (7, 5), D (6, 2). Quadrilateral ABCD is a (4 points)
    7·1 answer
  • What is 234% of a dollar
    7·1 answer
  • List 3 equivalent ratios of 5/2
    8·2 answers
  • What is the degree of the polynomial 2x6+5x3−x2+100?
    14·2 answers
  • Can someone help me answer this
    6·1 answer
  • Can someone please take the time out of they’re day and help me and with this question
    9·1 answer
  • Please help me thank you
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!