1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Westkost [7]
4 years ago
10

Juanelda's doctor has prescribed medication that she must take every 5 hours. She started the medication at 10:00

Mathematics
1 answer:
qwelly [4]4 years ago
7 0
Need more information there is no question being asked.
You might be interested in
Solve question shown below
nadezda [96]

Simplify the numerator and denominator first:

5/8 + 3/4 = 11/8

-2/3 - 5/6 = -3/2

Now you have 11/8 / -3/2

When dividing two fractions change division to multiplication and flip the second fraction over:

11/8 x -2/3 = 11 x -2 / 8 x 3 = -22/24

-22/24 reduces to -11/12

The answer is -11/12

6 0
4 years ago
HURRY UP ASAP DOING A QUIZ WORTH 32 POINTS Which number line plots the integers –8, –4, and 11?
Alexeev081 [22]

Answer:11 is under 12 on the negative side -8 is above the number 6 is on the negative side and -4 is on the negative side of the number six

Step-by-step explanation:

8 0
3 years ago
Find the perimeter. Simplify your answer.
Kisachek [45]

Answer:

4s + 2

Step-by-step explanation:

The way we find the perimeter is we add up all the sides

s+1 + s + s+1 + s

Now we add up light terms and we get 4s+2 as our answer

8 0
2 years ago
Read 2 more answers
Lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​
Schach [20]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

\rm :\longmapsto\:n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

\rm \:  =  \: \dfrac{n( {n}^{n}  - 1)}{n - 1}

\rm \:  =  \: \dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }

Now, Consider Denominator, we have

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {n}^{n}

can be rewritten as

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {(n - 1)}^{n} +   {n}^{n}

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

So, on substituting the values evaluated above, we get

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}  - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

Now, we know that,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x}  =  {e}^{k}}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{1 +  {e}^{ - 1}  + {e}^{ - 2} +  -  -  -  -  \infty }

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} }

\rm \:  =  \: \dfrac{e - 1}{e}

\rm \:  =  \: 1 - \dfrac{1}{e}

Hence,

\boxed{\tt{ \displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} } =  \frac{e - 1}{e} = 1 -  \frac{1}{e}}}

3 0
3 years ago
Square PQRS is rotated 180° counterclockwise around the origin.
KiRa [710]

The side that is equivalent to side SR is side AB.

<h3>How to carry out Rotational Transformation?</h3>

When rotating a point 180 degrees counterclockwise about the origin, our point A(x, y) becomes A'(-x, -y). Thus, all we do is make both x and y negative.

The coordinates of the original square are;

P(2, 4); Q(5, 5); R(5, 1); S(2, 1)

Now, applying the transformation rule above gives us;

P(-2, -4); Q(-5, -5); R(-5, -1); S(-2, -1)

The side that is therefore equivalent to side SR is side AB.

Read more about Rotational Transformation at; brainly.com/question/26249005

#SPJ1

6 0
2 years ago
Other questions:
  • Hello, I need help with my geometry homework. It has to do with simplifying radicals and sin,cos, and tan. Thank you for your ti
    12·1 answer
  • In 5 card poker hand what is the probability of having exactly 1 ace
    11·1 answer
  • What is the least number of times a hummingbird will flap its wing in 15 seconds
    11·1 answer
  • Solve for r. <br> 4r-9s=K
    9·2 answers
  • 5x - 3y = -15 solve for y
    11·1 answer
  • What is the perimeter of the figure
    13·1 answer
  • Which list of numbers is ordered from greatest to least?
    13·1 answer
  • Which logarithmic equation is equivalent to the exponential equation below? 9^x = 27
    13·1 answer
  • The expression (x^3)(x^-17) is equivalent to x^n".<br><br> What is the value of n?
    11·1 answer
  • SOMEONE PLEASE PLEASE HELP ME WITH THIS I HAVE TO PASS PLEASE PLEASE PLEASEE!!!!
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!