1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kodGreya [7K]
3 years ago
14

Lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​

Mathematics
1 answer:
Schach [20]3 years ago
3 0

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

\rm :\longmapsto\:n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

\rm \:  =  \: \dfrac{n( {n}^{n}  - 1)}{n - 1}

\rm \:  =  \: \dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }

Now, Consider Denominator, we have

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {n}^{n}

can be rewritten as

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {(n - 1)}^{n} +   {n}^{n}

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

So, on substituting the values evaluated above, we get

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}  - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

Now, we know that,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x}  =  {e}^{k}}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{1 +  {e}^{ - 1}  + {e}^{ - 2} +  -  -  -  -  \infty }

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} }

\rm \:  =  \: \dfrac{e - 1}{e}

\rm \:  =  \: 1 - \dfrac{1}{e}

Hence,

\boxed{\tt{ \displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} } =  \frac{e - 1}{e} = 1 -  \frac{1}{e}}}

You might be interested in
Find last year's salary, if after a 4% pay raise, this year's salary is $34,320
Oksana_A [137]
34320*100/104 = 
$33,000


4 0
3 years ago
Find the base of a parallelogram with a slant height of 7cm and an perimeter of 63 cm2
vlada-n [284]

Base of parallelogram b = 24.5 cm

Step-by-step explanation:

We are given:

Perimeter =P= 63 cm^2

Slant Height =a= 7 cm

Base of Parallelogram =b= ?

The formula used is:

Perimeter = 2(a+b)

where a is height and b is base

Putting values:

Perimeter = 2(a+b)\\63=2(7+b)\\63=14+2b\\2b=63-14\\2b=49\\b=\frac{49}{2}\\b=24.5

So, Base of parallelogram b = 24.5 cm

Keywords: Perimeter of Parallelogram

Learn more about Perimeter of Parallelogram at:

  • brainly.com/question/6594923
  • brainly.com/question/1822996
  • brainly.com/question/6594923

#learnwithBrainly

5 0
3 years ago
Sue is collecting eggs and she wants to sell them in egg cartons that hold a dozen eggs. If she collects 75 eggs, how many full
Setler [38]

Answer:

she would have 6 egg cartons to sell and 3 eggs left over (:

Step-by-step explanation:

75 divided by 12 equals 6.25

12 times 6 equals 72

75 minus 72 equals 3

egg cartons- 6

left over eggs-3

Hope this helps (:

4 0
3 years ago
A class of 30 students has 12 girls. What is the ratio to boys?
miv72 [106K]
I think 18?????????
6 0
3 years ago
Read 2 more answers
Solve for y in terms of x<br> 3(x – 7) + 7y = 10x
MAXImum [283]

Answer:

solve for y is y = x + 3

Solve for x is x = − 3 + y

Step-by-step explanation:

4 0
3 years ago
Other questions:
  • What's the equation of the line slope 1/4 y-intercept: 3
    7·2 answers
  • Given: 3x+7+2(4x+1) = 3(x-1) -4 prove: x=-2
    11·1 answer
  • What is 10.666 rounded to the nearest tenth
    5·2 answers
  • Triangles F H G and K J G share common point G. The lengths of sides H G and G J are congruent. Angles F H G and K J G are right
    12·2 answers
  • Factor completely p^4-81
    11·1 answer
  • How much does a customer pay for an article marked at $50 if a sales tax of 6% is charged?
    12·1 answer
  • Bradley and Melissa share $2,000 in the ratio 2:3. a. How much money did Bradley receive? b. How much money did Melissa receive.
    10·2 answers
  • What is the length x of PQ
    12·1 answer
  • PLEASE HELP WILL MARK BRAINLIEST THANK U
    14·1 answer
  • What is the length of the missing leg? If necessary, round to the nearest tenth.
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!