1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kodGreya [7K]
2 years ago
14

Lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​

Mathematics
1 answer:
Schach [20]2 years ago
3 0

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

\rm :\longmapsto\:n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

\rm \:  =  \: \dfrac{n( {n}^{n}  - 1)}{n - 1}

\rm \:  =  \: \dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }

Now, Consider Denominator, we have

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {n}^{n}

can be rewritten as

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {(n - 1)}^{n} +   {n}^{n}

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

So, on substituting the values evaluated above, we get

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}  - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

Now, we know that,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x}  =  {e}^{k}}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{1 +  {e}^{ - 1}  + {e}^{ - 2} +  -  -  -  -  \infty }

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} }

\rm \:  =  \: \dfrac{e - 1}{e}

\rm \:  =  \: 1 - \dfrac{1}{e}

Hence,

\boxed{\tt{ \displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} } =  \frac{e - 1}{e} = 1 -  \frac{1}{e}}}

You might be interested in
A ribbon is 4 m long. How many pieces each 30 cm long can be cut from the ribbon?​
EleoNora [17]

Answer:

13 pieces

Step-by-step explanation:

First we convert 4m into cm :

1m = 100cm

4m = 400cm

Now we need to figure out how many 30s go into 400 :

400 ÷ 30 = 13 remainder 10

So 13 pieces can be cut from the ribbon

Hope this helped and have a good day  

5 0
2 years ago
Read 2 more answers
Melissa and Joey enjoyed dinner at a restaurant. They paid the waiter $100.50 plus a 20% tip. How much did each person pay if th
frosja888 [35]

the answer is $60.30 because half of 100.50 is 50.25 and the both would pay 10%. 10% of 100.50 is 10.05.

10.05+50.25= 60.30

4 0
3 years ago
5. The Riverside Geyser in Yellowstone National Park erupts
Anastasy [175]

Answer:

Step-by-step explanation:

<h3>A.</h3>

The equation for the model of the geyser is found by substituting the given upward velocity into the vertical motion model. The problem statement tells us v=69. We assume the height is measured from ground level, so c=0. Putting these values into the model gives ...

  h(t) = -16t² +69t

__

<h3>B.</h3>

The maximum height is at a time that is halfway between the zeros of the function.

  h(t) = -16t(t -4.3125) . . . . . has zeros at t=0 and t=4.3125

The maximum height will occur at t=4.3125/2 = 2.15625 seconds. The height at that time is ...

  h(t) = -16(2.15625)(2.15625 -4.3125) = 16(2.15625²) ≈ 74.39 . . . feet

The maximum height of the geyser is about 74.4 feet.

4 0
2 years ago
HELP RN PLEASEEE for a quiz
sattari [20]

Answer:

Step-by-step explanation:

( x_{1} , y_{1} )

( x_{2} , y_{2} )

m = \frac{y_{2} -y_{1} }{x_{2} -x_{1} }

parallel lines have the same slopes , perpendicular lines have slope which are opposite reciprocals.

~~~~~~~~~~~~~~~

A( 3 , 5 )

B( - 2 , 7 )

m_{AB} = \frac{7-5}{-2-3} = - \frac{2}{5}

C( 10 , 5 )

D( 6 , 15 )

m_{CD} = \frac{15-5}{6-10} = - \frac{5}{2}

The answer is (A) Neither

8 0
2 years ago
What is the surface area?
Ray Of Light [21]
The area of the surface
3 0
3 years ago
Other questions:
  • If you simplify x • 5x by multiplying like terms, your answer is 5 times x raised to some exponent. What is the exponent of x?
    11·2 answers
  • Assume that a procedure yields a geometric distribution where the probability of success is 63%. Use the geometric probability f
    14·1 answer
  • What is the domain of the function f(x)=4x-16?
    5·2 answers
  • Use long division to find the quotient below.
    11·2 answers
  • Through: (-3,2) and (0, -3)
    12·1 answer
  • Write an equation. A value x increased by twelve is equal to fifteen​
    5·2 answers
  • Solve for x:<br> 9x + 10 = - 4x + 36<br> helppo pleasee !!!
    10·2 answers
  • Comment ur discords pls
    7·2 answers
  • Plssss help I’ll mark you!
    5·1 answer
  • PLZ HELP
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!