1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kodGreya [7K]
2 years ago
14

Lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​

Mathematics
1 answer:
Schach [20]2 years ago
3 0

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

\rm :\longmapsto\:n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

\rm \:  =  \: \dfrac{n( {n}^{n}  - 1)}{n - 1}

\rm \:  =  \: \dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }

Now, Consider Denominator, we have

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {n}^{n}

can be rewritten as

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {(n - 1)}^{n} +   {n}^{n}

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

So, on substituting the values evaluated above, we get

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}  - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

Now, we know that,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x}  =  {e}^{k}}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{1 +  {e}^{ - 1}  + {e}^{ - 2} +  -  -  -  -  \infty }

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} }

\rm \:  =  \: \dfrac{e - 1}{e}

\rm \:  =  \: 1 - \dfrac{1}{e}

Hence,

\boxed{\tt{ \displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} } =  \frac{e - 1}{e} = 1 -  \frac{1}{e}}}

You might be interested in
The two men measure the angle of elevation to the highest point on the rock to be 22.6°. They
IgorC [24]

Answer:

  • 15 m

Step-by-step explanation:

<em>Refer to attached picture</em>

  • The height  = h
  • Angles of elevation 22.6° and 38.3°
  • Closer distance  = d

<u>Use tangent to solve</u>

  • tan 22.6° = h/(d + 17) ⇒ h = (d + 17) tan 22.6° ⇒ h = 0.42(d + 17)
  • tan 38.3° = h/d          ⇒ h = d tan 38.3°           ⇒ h = 0.79d

<u>Compare the equations above and find the value of d:</u>

  • 0.42(d + 17) = 0.79d
  • 0.42d + 7.14 = 0.79d
  • 0.79d - 0.42d = 7.14
  • 0.37 d = 7.14
  • d = 7.14/0.37
  • d = 19.3 m

<u>Now find the value of h:</u>

  • h = 0.79d
  • h = 0.79*19.3
  • h = 15

Wave Rock is 15 m tall

3 0
3 years ago
5. Skylar has pool toys shaped like a sphere
slega [8]

Answer:

128π or 402.12

Step-by-step explanation:

Vol of a sphere = 4/3πr³

Sub 2 into ^

Multiply by 12 to find vol of all 12 shapes

This is the volume of water needed

6 0
3 years ago
9^2 times 9^-6 exponential form
Scrat [10]

The result of the expression in exponential form is 9^-4

<h3>Product of exponents</h3>

Given the expression below

9^2 \times 9^{-6}

According the product law, since the base are equal, we will add the exponent to have:

9^2 \times 9^{-6}=9^{-6+2}\\9^2 \times 9^{-6} = 9^{-4}

Hence the result of the expression in exponential form is 9^-4

Learn more on exponents here; brainly.com/question/11975096

#SPJ1

7 0
2 years ago
Can someone explain how to do this please
IrinaVladis [17]

Answer:

yes

Step-by-step explanation:

65 divided by 6.25 =10.4

67 - 10.4 =56.6

brailiest please

4 0
3 years ago
Enter the value of y that makes the given equatlon true.<br> 15y +3= 6
Lunna [17]

Answer:

y = 1/5 or y = 0.2

Step-by-step explanation:

15y +3= 6\\15y+3-3=6-3\leftarrow \text {Subtraction Property of Equality} \\15y=3\\\\\frac{15y}{15} =\frac{3}{15} \leftarrow \text {Divsion Property of Equality}\\

y=\frac{3}{15}\\\frac{3/3}{15/3} = \frac{1}{5} \leftarrow \text {Simplifying the Answer}\\\boxed{y=\frac{1}{5}}

6 0
3 years ago
Read 2 more answers
Other questions:
  • I’m so confused I need help please!!
    6·2 answers
  • What is the measure (in degrees) of the smallest interior angle of a triangle in which the exterior angle measures have the rati
    5·2 answers
  • If you can buy 1⁄3 of a box of chocolates for 6 dollars, how much can you purchase for 4 dollars? Write your answer as a fractio
    5·2 answers
  • Molly had a $12 gift card to download music. She bought 8 songs that each cost the same amount. Write a variable equation, then
    10·1 answer
  • What is F=(9/5)C+32, What is the equivalent Fahrenheit temperature of 5°C?
    11·1 answer
  • Lexie wants to earn at least $400 a week. She earns $10 an hour working at a grocery store and $8 an hour working at a restauran
    13·1 answer
  • Need help asap !!!! It also said round to the nearest tenth
    8·1 answer
  • A high school teacher grades a math test. She wants to see the numerical
    12·1 answer
  • — 9a3. — Зазь<br> simplify
    8·1 answer
  • There are about 30.2 million small businesses in the u.s and about 30,000 other larger businesses. What percent of all businesse
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!