1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xz_007 [3.2K]
4 years ago
12

Find the radius of a circle is the circumference is 50.24cm. (Hint: Use C=2 x pi x radius to work backwards. Use the following s

et up and solve for the radius: 50.24=2 x 3.14 x radius)
Mathematics
1 answer:
g100num [7]4 years ago
8 0

Answer:

r = 8 cm

Step-by-step explanation:

Circumference of circle = 50.24 cm

                         2πr         = 50.24

                    2 * 3.14 * r   = 50.24

                                   r = \frac{50.24}{2*3.14}=\frac{5024}{2*314}\\\\\\\\

                                  r = 8 cm

You might be interested in
Kyle wants to determine the surface area for a cube that is 5 cm on each side.
jok3333 [9.3K]

Answer:

5cm^3

Step-by-step explanation: please let me know if that wrong.

7 0
3 years ago
Read 2 more answers
The table below represents the atmospheric temperature at a location as a function of the altitude:
RSB [31]

from x15 to x 25 is 4 - -16 = -20 degree change

25 -15 = 10000 feet

-20/10 = -2 degrees every 1000 feet


7 0
4 years ago
Use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​
Kitty [74]

First check the characteristic solution: the characteristic equation for this DE is

<em>r</em> ² - 3<em>r</em> + 2 = (<em>r</em> - 2) (<em>r</em> - 1) = 0

with roots <em>r</em> = 2 and <em>r</em> = 1, so the characteristic solution is

<em>y</em> (char.) = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>)

For the <em>ansatz</em> particular solution, we might first try

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> + <em>d</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

where <em>ax</em> + <em>b</em> corresponds to the 2<em>x</em> term on the right side, (<em>cx</em> + <em>d</em>) exp(<em>x</em>) corresponds to (1 + 2<em>x</em>) exp(<em>x</em>), and <em>e</em> exp(3<em>x</em>) corresponds to 4 exp(3<em>x</em>).

However, exp(<em>x</em>) is already accounted for in the characteristic solution, we multiply the second group by <em>x</em> :

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

Now take the derivatives of <em>y</em> (part.), substitute them into the DE, and solve for the coefficients.

<em>y'</em> (part.) = <em>a</em> + (2<em>cx</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

… = <em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

<em>y''</em> (part.) = (2<em>cx</em> + 2<em>c</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… = (<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

Substituting every relevant expression and simplifying reduces the equation to

(<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… - 3 [<em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)]

… +2 [(<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)]

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

… … …

2<em>ax</em> - 3<em>a</em> + 2<em>b</em> + (-2<em>cx</em> + 2<em>c</em> - <em>d</em>) exp(<em>x</em>) + 2<em>e</em> exp(3<em>x</em>)

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

<em>x</em> : 2<em>a</em> = 2

1 : -3<em>a</em> + 2<em>b</em> = 0

exp(<em>x</em>) : 2<em>c</em> - <em>d</em> = 1

<em>x</em> exp(<em>x</em>) : -2<em>c</em> = 2

exp(3<em>x</em>) : 2<em>e</em> = 4

Solving the system gives

<em>a</em> = 1, <em>b</em> = 3/2, <em>c</em> = -1, <em>d</em> = -3, <em>e</em> = 2

Then the general solution to the DE is

<em>y(x)</em> = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>) + <em>x</em> + 3/2 - (<em>x</em> ² + 3<em>x</em>) exp(<em>x</em>) + 2 exp(3<em>x</em>)

4 0
3 years ago
0.32 as a mixed number
torisob [31]

Answer:

Hi! The answer to your question is 0 8/25

Step-by-step explanation:

☆*: .。..。.:*☆☆*: .。..。.:*☆☆*: .。..。.:*☆☆*: .。..。.:*☆

☁Brainliest is greatly appreciated!☁

Hope this helps!!

- Brooklynn Deka

6 0
3 years ago
In the figure what is the length of the tangent from the external point D to point B point point
natita [175]
It d over 3 u 2 text me if you need more help hope this helps u a little bit more.
8 0
4 years ago
Other questions:
  • F(x) = -x^2 + 6x -4; f(6)<br> A. -4<br> B. 4<br> C. 5<br> D. 13<br> Pls help now
    9·1 answer
  • A canoe in still water travels at a rate of 10 miles per hour. The current today is traveling at a rate of 3 miles per hour. If
    6·2 answers
  • Vertex on the graph of the equation y=3x^2 + 6x + 1
    8·1 answer
  • Ali's dog weighs 8 times as much as her cat together, the two cats weigh 54 pounds. how much does Ali's dog weigh
    12·2 answers
  • Need help plz show work<br>step by step
    5·1 answer
  • Tony wants to save $10,000 in 6 years. Assuming a 4% interest rate, what is the minimum he must save each month to reach his goa
    14·1 answer
  • The square of the hypotenuse of a right triangle is 625. Which could be the side lengths explain
    8·1 answer
  • Four less than the quotient of a number x and 5.
    8·2 answers
  • What is the measure of angle aec?
    14·2 answers
  • 2. How many solutions in the equation 3x + 5 = 3x + 10 *
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!