1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dmitry_Shevchenko [17]
3 years ago
8

The point-slope form of the equation of the line that passes through (–5, –1) and (10, –7) is y + 7 = (x – 10). What is the stan

dard form of the equation for this line? 2x – 5y = –15 2x – 5y = –17 2x + 5y = –15 2x + 5y = –17
Mathematics
2 answers:
taurus [48]3 years ago
7 0
The answer is 2x +5y=-15
ra1l [238]3 years ago
3 0
2x-5y=-17!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
You might be interested in
Identify the expression with nonnegative limit values. More info on the pic. PLEASE HELP.
marshall27 [118]

Answer:

\lim _{x\to 2}\:\frac{x-2}{x^2-2}\\\\  \lim _{x\to 11}\:\frac{x^2+6x-187}{x^2+3x-154}\\\\ \lim _{x\to \frac{5}{2}}\left\frac{2x^2+x-15}{2x-5}\right

Step-by-step explanation:

a) \lim _{x\to 3}\:\frac{x^2-10x+21}{x^2+4x-21}=\lim \:_{x\to \:3}\:\frac{\left(x-7\right)\left(x-3\right)}{\left(x+7\right)\left(x-3\right)}=\lim \:_{x\to \:3}\:\frac{x-7}{x+7}=\frac{3-7}{3+7}=-\frac{4}{10}=-\frac{2}{5}

b) \lim _{x\to -\frac{3}{2}}\left(\frac{2x^2-5x-12}{2x+3}\right)=\lim \:_{x\to -\frac{3}{2}}\:\frac{\left(2x+3\right)\left(x-4\right)}{\left(2x+3\right)}=\lim \:\:_{x\to \:-\frac{3}{2}}\:\left(x-4\right)=-\frac{3}{2}-4\\ \\ \lim _{x\to -\frac{3}{2}}\left(\frac{2x^2-5x-12}{2x+3}\right)=-\frac{11}{2}

c) \lim _{x\to 2}\:\frac{x-2}{x^2-2}=\frac{2-2}{\left(2\right)^2-2}=\frac{0}{4-2}=0

d) \lim _{x\to 11}\:\frac{x^2+6x-187}{x^2+3x-154}=\lim _{x\to 11}\:\frac{\left(x-11\right)\left(x+17\right)}{\left(x-11\right)\left(x+14\right)}=\lim _{x\to 11}\:\frac{\left(x+17\right)}{\left(x+14\right)}=\frac{11+17}{11+14}=\frac{28}{25}

e) \lim _{x\to 3}\:\frac{x^2-8x+15}{x-3}=\lim \:_{x\to \:3}\:\frac{\left(x-3\right)\left(x-5\right)}{x-3}=\lim _{x\to 3}\left(x-5\right)=3-5=-2

f) \lim _{x\to \frac{5}{2}}\left(\frac{2x^2+x-15}{2x-5}\right)=\lim \:_{x\to \:\frac{5}{2}}\frac{\left(2x-5\right)\left(x+3\right)}{2x-5}=\lim \:\:_{x\to \:\:\frac{5}{2}}\left(x+3\right)=\frac{5}{2}+3=\frac{11}{2}

4 0
3 years ago
9. Simplify: 6√18+3√50
sukhopar [10]
6 \sqrt{18} +3 \sqrt{50} =6 \sqrt{9*2} +3 \sqrt{25*2} =6*3 \sqrt{2} +3*5 \sqrt{2}=18 sqrt2+15 sqrt2=33 sqrt 2
4 0
3 years ago
Read 2 more answers
What is the value of m?
Gnesinka [82]
M=18

explication: both of the angles are 90 degrees, 90-33=57, 3(18)+3=57
8 0
3 years ago
Read 2 more answers
You can rake a 20 square meter lawn in 10 minutes. If your mother asks you to rake your own lawn, which is 30 square meters, how
arsen [322]
20 square meter lawn..............................10 min
10 square meter lawn...............................5 min
30 square meter lawn in.........................5*3=15 min
5 0
3 years ago
You are training to compete in a 10-kilometer race, and you know the circular running trail at your park is one mile long. How m
Ket [755]

Answer:

6.2 rounds

Step-by-step explanation:

since 1 kilometer is 0.62 miles

10 kilometers is 6.2 miles

so about 6 and 1/5 rounds

8 0
2 years ago
Other questions:
  • What is the slope intercept form equation of the line that passes through 1,3 and 3,7
    7·1 answer
  • What is the standard form of the equation for this circle?
    7·2 answers
  • An average person’s hair grows at a rate of 18 cm per year. How fast in inches per month does the average person’s hair grow? Sh
    9·2 answers
  • Give The measures of the angle that is complementary to the given angle
    8·1 answer
  • Someone help me with 5.84 divide 4
    12·2 answers
  • In which expression should the exponents be multiplied
    15·1 answer
  • 50 POINTS PLUS BRAINLIST
    15·2 answers
  • (8a+5B-3)+3(b-3) what is that
    5·2 answers
  • TEST QUESTION! please help me!
    11·1 answer
  • NEED ASAP PLS HELP
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!