Answer:
SORRY I DID NOT UNDERSTAND
2+2=2x+2
-2 to both sides
2=2x
Divide 2
X=1
Answer:
10 in
Step-by-step explanation:
There are two ways to work this problem, and they give different answers. The reason for that is that <em>the data shown in the diagram is not consistent</em>.
<u>Method 1</u>
Use the area to determine the base length. The area formula is ...
A = (1/2)bh
20 in^2 = (1/2)(b)(4 in)
(20 in^2)/(2 in) = b = 10 in
The missing side dimension is 10 inches.
__
<u>Method 2</u>
Use the Pythagorean theorem to find the parts of the base, then add them up.
Left of the "?" we have ...
left^2 +4^ = 6^
left^2 = 36 -16 = 20
left = √20 = 2√5
Right of the "?" we have ...
right^2 +4^2 = 8^2
right^2 = 64 -16 = 48
right = √48 = 4√3
So, the base length is ...
base = left + right = 2√5 +4√3
base ≈ 11.400 in
The missing side dimension is 11.4 inches. (The area is 22.8 in^2.)
Answer:
E(w) = 1600000
v(w) = 240000
Step-by-step explanation:
given data
sequence = 1 million iid (+1 and +2)
probability of transmitting a +1 = 0.4
solution
sequence will be here as
P{Xi = k } = 0.4 for k = +1
0.6 for k = +2
and define is
x1 + x2 + ................ + X1000000
so for expected value for W
E(w) = E( x1 + x2 + ................ + X1000000 ) ......................1
as per the linear probability of expectation
E(w) = 1000000 ( 0.4 × 1 + 0.6 × 2)
E(w) = 1600000
and
for variance of W
v(w) = V ( x1 + x2 + ................ + X1000000 ) ..........................2
v(w) = V x1 + V x2 + ................ + V X1000000
here also same as that xi are i.e d so cov(xi, xj ) = 0 and i ≠ j
so
v(w) = 1000000 ( v(x) )
v(w) = 1000000 ( 0.24)
v(w) = 240000