1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marrrta [24]
4 years ago
11

An action potential is generated by the movement of

Biology
1 answer:
larisa86 [58]4 years ago
8 0
The answer would be ions

The gradient of ion concentration from intracellular compared to the extracellular will determine the resting potential of the cells. The movement of the ion itself will induce the action potential in nerve cells. Natrium/sodium and Kalium/Potassium ion have a big role in this mechanism.
You might be interested in
WILL MARK BRAINLIEST FOR THE BEST ANSWER - 25 POINTS
kicyunya [14]

Answer:

Explanation:

Steps of cellular respiration

Overview of the steps of cellular respiration.

1. Glycolysis. Six-carbon glucose is converted into two pyruvates (three carbons each). ATP and NADH are made. These reactions take place in the cytosol.

2. Pyruvate oxidation. Pyruvate travels into the mitochondrial matrix and is converted to a two-carbon molecule bound to coenzyme A, called acetyl CoA. Carbon dioxide is released and NADH is made.

3. Citric acid cycle. The acetyl CoA combines with a four-carbon molecule and goes through a cycle of reactions, ultimately regenerating the four-carbon starting molecule. ATP (or, in some cases, GTP), NADH, and FADH_2 are made, and carbon dioxide is released. These reactions take place in the mitochondrial matrix.

4. Oxidative phosphorylation. The NADH and FADH_2 produced in other steps deposit their electrons in the electron transport chain in the inner mitochondrial membrane. As electrons move down the chain, energy is released and used to pump protons out of the matrix and into the intermembrane space, forming a gradient. The protons flow back into the matrix through an enzyme called ATP synthase, making ATP. At the end of the electron transport chain, oxygen accepts electrons and takes up protons to form water.

Overview of the steps of cellular respiration.

Glycolysis. Six-carbon glucose is converted into two pyruvates (three carbons each). ATP and NADH are made. These reactions take place in the cytosol.

Pyruvate oxidation. Pyruvate travels into the mitochondrial matrix and is converted to a two-carbon molecule bound to coenzyme A, called acetyl CoA. Carbon dioxide is released and NADH is made.

Citric acid cycle. The acetyl CoA combines with a four-carbon molecule and goes through a cycle of reactions, ultimately regenerating the four-carbon starting molecule. ATP (or, in some cases, GTP), NADH, and FADH_2 are made, and carbon dioxide is released. These reactions take place in the mitochondrial matrix.

Oxidative phosphorylation. The NADH and FADH_2 produced in other steps deposit their electrons in the electron transport chain in the inner mitochondrial membrane. As electrons move down the chain, energy is released and used to pump protons out of the matrix and into the intermembrane space, forming a gradient. The protons flow back into the matrix through an enzyme called ATP synthase, making ATP. At the end of the electron transport chain, oxygen accepts electrons and takes up protons to form water.

During cellular respiration, a glucose molecule is gradually broken down into carbon dioxide and water. Along the way, some ATP is produced directly in the reactions that transform glucose. Much more ATP, however, is produced later in a process called oxidative phosphorylation. Oxidative phosphorylation is powered by the movement of electrons through the electron transport chain, a series of proteins embedded in the inner membrane of the mitochondrion.

These electrons come originally from glucose and are shuttled to the electron transport chain by electron carriers

NAD

+

NAD

+

start text, N, A, D, end text, start superscript, plus, end superscript and

FAD

FADstart text, F, A, D, end text, which become

NADH

NADHstart text, N, A, D, H, end text and

FADH

2

FADH

2

​

start text, F, A, D, H, end text, start subscript, 2, end subscript when they gain electrons. To be clear, this is what's happening in the diagram above when it says

+

+plus

NADH

NADHstart text, N, A, D, H, end text or

+

+plus

FADH

2

FADH

2

​

start text, F, A, D, H, end text, start subscript, 2, end subscript. The molecule isn't appearing from scratch, it's just being converted to its electron-carrying form:

NAD

+

NAD

+

start text, N, A, D, end text, start superscript, plus, end superscript

+

+plus

2

e

−

2e

−

2, e, start superscript, minus, end superscript

+

+plus

2

H

+

2H

+

2, start text, H, end text, start superscript, plus, end superscript

→

→right arrow

NADH

NADHstart text, N, A, D, H, end text

+

+plus

H

+

H

+

start text, H, end text, start superscript, plus, end superscript

FAD

FADstart text, F, A, D, end text

+

+plus

2

e

−

2e

−

2, e, start superscript, minus, end superscript

+

+plus

2

H

+

2H

+

2, start text, H, end text, start superscript, plus, end superscript

→

→right arrow

FADH

2

FADH

2

​

start text, F, A, D, H, end text, start subscript, 2, end subscript

To see how a glucose molecule is converted into carbon dioxide and how its energy is harvested as ATP and

NADH

NADHstart text, N, A, D, H, end text

/

/slash

FADH

2

FADH

2

​

start text, F, A, D, H, end text, start subscript, 2, end subscript in one of your body's cells, let’s walk step by step through the four stages of cellular respiration.

Glycolysis. In glycolysis, glucose—a six-carbon sugar—undergoes a series of chemical transformations. In the end, it gets converted into two molecules of pyruvate, a three-carbon organic molecule. In these reactions, ATP is made, and

3 0
3 years ago
I need to know the rate of the volume change for each section along with the rate of photosynthesis
SVEN [57.7K]

Explanation:

25 at under time min. over rate of volume change

3 0
3 years ago
Give ways of conserving and protecting the soil for future generations.
ANEK [815]
Less use of pesticides
6 0
3 years ago
Read 2 more answers
Glucose is broken down during cellular respiration to produce carbon dioxide and?
Nat2105 [25]

I believe that the answer to this question is energy!! because cells need energy and the reason they respire is for energy


8 0
4 years ago
Read 2 more answers
I'll mark brainliest...
myrzilka [38]
RNA because i just took the test
5 0
3 years ago
Read 2 more answers
Other questions:
  • Kyle had a brother who exhibited heart disease at age 62 and a sister who exhibited heart disease at age 64. based on the age at
    6·2 answers
  • What are the components of the integumentary system?
    15·2 answers
  • gene expression can occur at several points along the pathway from DNA to RNA proteins. in one example of gene expressions, the
    6·2 answers
  • You perform an experiment in which you take 16 pots of strawberry plants and give half of them 1 gm of ammonium nitrate per lite
    7·1 answer
  • Roasted grasshoppers are highly nutritious; however, even if you are very hungry, you may still reject them as food because the
    8·1 answer
  • Guided Practice
    15·1 answer
  • Drag the tiles to the correct locations. The tiles can be used more than once. Identify which type of reaction the feature occur
    13·2 answers
  • Why does electrical energy have the least amount of waste?
    14·2 answers
  • Is this correct??? if not tell mee plsssss ofr brainliest
    8·1 answer
  • Studying science will help make you a better member of society?
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!