If you are having trouble with ratios you can look at them as fractions. The first number being the numerator and the second number being the denominator or the other way around. When you are asked to find an equivalent ratio, you just have to find an equivalent fraction.
Answer:
<u>hu</u>
<u />
Step-by-step explanation:
Answer:
C. Because (-3)^2 is NOT equal to -9
Step-by-step explanation:
Answer:
Point N(4, 1)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Algebra I</u>
- Coordinates (x, y)
- Functions
- Function Notation
- Terms/Coefficients
- Anything to the 0th power is 1
- Exponential Rule [Rewrite]:
- Exponential Rule [Root Rewrite]:
<u>Calculus</u>
Derivatives
Derivative Notation
Derivative of a constant is 0
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]: ![\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Step-by-step explanation:
<u>Step 1: Define</u>
<u />
<u />
<u />
<u />
<u />
<u>Step 2: Differentiate</u>
- [Function] Rewrite [Exponential Rule - Root Rewrite]:

- Chain Rule:
![\displaystyle y' = \frac{d}{dx}[(x - 3)^{\frac{1}{2}}] \cdot \frac{d}{dx}[x - 3]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%28x%20-%203%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%5D%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bx%20-%203%5D)
- Basic Power Rule:

- Simplify:

- Multiply:

- [Derivative] Rewrite [Exponential Rule - Rewrite]:

- [Derivative] Rewrite [Exponential Rule - Root Rewrite]:

<u>Step 3: Solve</u>
<em>Find coordinates</em>
<em />
<em>x-coordinate</em>
- Substitute in <em>y'</em> [Derivative]:

- [Multiplication Property of Equality] Multiply 2 on both sides:

- [Multiplication Property of Equality] Multiply √(x - 3) on both sides:

- [Equality Property] Square both sides:

- [Addition Property of Equality] Add 3 on both sides:

<em>y-coordinate</em>
- Substitute in <em>x</em> [Function]:

- [√Radical] Subtract:

- [√Radical] Evaluate:

∴ Coordinates of Point N is (4, 1).
Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Derivatives
Book: College Calculus 10e