Here is our profit as a function of # of posters
p(x) =-10x² + 200x - 250
Here is our price per poster, as a function of the # of posters:
pr(x) = 20 - x
Since we want to find the optimum price and # of posters, let's plug our price function into our profit function, to find the optimum x, and then use that to find the optimum price:
p(x) = -10 (20-x)² + 200 (20 - x) - 250
p(x) = -10 (400 -40x + x²) + 4000 - 200x - 250
Take a look at our profit function. It is a normal trinomial square, with a negative sign on the squared term. This means the curve is a downward facing parabola, so our profit maximum will be the top of the curve.
By taking the derivative, we can find where p'(x) = 0 (where the slope of p(x) equals 0), to see where the top of profit function is.
p(x) = -4000 +400x -10x² + 4000 -200x -250
p'(x) = 400 - 20x -200
0 = 200 - 20x
20x = 200
x = 10
p'(x) = 0 at x=10. This is the peak of our profit function. To find the price per poster, plug x=10 into our price function:
price = 20 - x
price = 10
Now plug x=10 into our original profit function in order to find our maximum profit:
<span>p(x)= -10x^2 +200x -250
p(x) = -10 (10)</span>² +200 (10) - 250
<span>p(x) = -1000 + 2000 - 250
p(x) = 750
Correct answer is C)</span>
See, mathpapa.com for all your mathematic and algebraic needs !
its x<-2
A. Its a square. This means each side times the side would give us the area (s^2)
4/3^2 or 1.3333 x 1.33333 = 16 / 9 area.
B. Really just pick any numbers you want.
16 yards long and 1/9 wide.
As long as they multiply to 16/9
Answer:
Greatest Number of Teams: 8
Number of Girls per Team: 5
Number of Boys per Team: 4
Step-by-step explanation:
32÷8=4
40÷8=5
Answer:
TRUE
Step-by-step explanation:
TRUE
a_1 = 2
a_n = 2*(an_1)
if we start with 2, we would get
a_2 = 2*(a_1) = 2*(2) = 4
a_3 = 2*(a_2) = 2*(4) = 8
a_4 = 2*(a_3) = 2*(8) = 16
a_5 = 2*(a_4) = 2*(16) = 32
.
.
.
and so on