Answer: No, they are not collinear.
Answer:
% Remaining![= [1-(1/2)^{\frac{t}{2.6}}]x100](https://tex.z-dn.net/?f=%20%3D%20%5B1-%281%2F2%29%5E%7B%5Cfrac%7Bt%7D%7B2.6%7D%7D%5Dx100%20)
And replacing the value t =5.5 hours we got:
% Remaining![= [1-(1/2)^{\frac{5.5}{2.6}}]x100 =76.922\%](https://tex.z-dn.net/?f=%20%3D%20%5B1-%281%2F2%29%5E%7B%5Cfrac%7B5.5%7D%7B2.6%7D%7D%5Dx100%20%3D76.922%5C%25)
Step-by-step explanation:
Previous concepts
The half-life is defined "as the amount of time it takes a given quantity to decrease to half of its initial value. The term is most commonly used in relation to atoms undergoing radioactive decay, but can be used to describe other types of decay, whether exponential or not".
Solution to the problem
The half life model is given by the following expression:

Where A(t) represent the amount after t hours.
represent the initial amount
t the number of hours
h=2.6 hours the half life
And we want to estimate the % after 5.5 hours. On this case we can begin finding the amount after 5.5 hours like this:

Now in order to find the percentage relative to the initial amount w can use the definition of relative change like this:
% Remaining = 
We can take common factor
and we got:
% Remaining![= [1-(1/2)^{\frac{t}{2.6}}]x100](https://tex.z-dn.net/?f=%20%3D%20%5B1-%281%2F2%29%5E%7B%5Cfrac%7Bt%7D%7B2.6%7D%7D%5Dx100%20)
And replacing the value t =5.5 hours we got:
% Remaining ![= [1-(1/2)^{\frac{5.5}{2.6}}]x100 =76.922\%](https://tex.z-dn.net/?f=%3D%20%5B1-%281%2F2%29%5E%7B%5Cfrac%7B5.5%7D%7B2.6%7D%7D%5Dx100%20%3D76.922%5C%25)
Answer:
D, All of the above.
Step-by-step explanation:
(A. set fitness goals
B. track performance
C. spot areas for improvement)
mark brainliest ??
<span>A) 3 - The third sock will match the first or second if they don't match each other.
B) 14 - It's highly unlikely yet possible to remove all brown socks first, the next two would have to be black.</span>