Let the 1st number be x; 2nd number be y; 3rd number be z.
x + y + z = 79
x = number we are looking for.
y = x * 5 ==> 5 times the first
z = x + 16 ==> 16 more than the first
Therefor,
x + (x * 5) + (x+16) = 79
1st step, multiply the 2nd number: x * 5 = 5x
x + 5x + x + 16 = 79
Add all like numbers:
7x + 16 = 79
To get x, transfer 16 to the other side and change its sign from positive to negative.
7x = 79 - 16
7x = 63
To get x, divide both sides by 7
7x/7 = 63/7
x = 9
To check. Substitute x by 9.
x + (x * 5) + (x+16) = 79
9 + (9 * 5) + (9 + 16) = 79
9 + 45 + 25 = 79
79 = 79 equal. value of x is correct.
Answer:
An explicit representation for the nth term of the sequence:

It means, option (B) should be true.
Step-by-step explanation:
Given the geometric sequence

A geometric sequence has a constant ratio, denoted by 'r', and is defined by

Determining the common ratios of all the adjacent terms

As the ratio is the same, so
r = 4
Given that f₁ = -1/2
substituting r = 4, and f₁ = -1/2 in the nth term


Thus, an explicit representation for the nth term of the sequence:

It means, option (B) should be true.
6 blue pencils and 3 red pencils means 9 total pencils. So the probability of pulling out ONE blue pencil would be 6/9 or about 67 percent. TWO blue pencils would be HALF of that. So 6/9 * 1/2 which is 6/18 or 1/3 or about 33 percent.
Answer:
<em>The answers are for option (a) 0.2070 (b)0.3798 (c) 0.3938
</em>
Step-by-step explanation:
<em>Given:</em>
<em>Here Section 1 students = 20
</em>
<em>
Section 2 students = 30
</em>
<em>
Here there are 15 graded exam papers.
</em>
<em>
(a )Here Pr(10 are from second section) = ²⁰C₅ * ³⁰C₁₀/⁵⁰C₁₅= 0.2070
</em>
<em>
(b) Here if x is the number of students copies of section 2 out of 15 exam papers.
</em>
<em> here the distribution is hyper-geometric one, where N = 50, K = 30 ; n = 15
</em>
<em>Then,
</em>
<em>
Pr( x ≥ 10 ; 15; 30 ; 50) = 0.3798
</em>
<em>
(c) Here we have to find that at least 10 are from the same section that means if x ≥ 10 (at least 10 from section B) or x ≤ 5 (at least 10 from section 1)
</em>
<em>
so,
</em>
<em>
Pr(at least 10 of these are from the same section) = Pr(x ≤ 5 or x ≥ 10 ; 15 ; 30 ; 50) = Pr(x ≤ 5 ; 15 ; 30 ; 50) + Pr(x ≥ 10 ; 15 ; 30 ; 50) = 0.0140 + 0.3798 = 0.3938
</em>
<em>
Note : Here the given distribution is Hyper-geometric distribution
</em>
<em>
where f(x) = kCₓ)(N-K)C(n-x)/ NCK in that way all these above values can be calculated.</em>
Answer:
<h2> 8 cm³ </h2>
Step-by-step explanation:
➡️ Volume = r³
➡️ 2³
➡️ 8