1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dahasolnce [82]
3 years ago
11

Drag each sequence to the correct location on the table.

Mathematics
1 answer:
ella [17]3 years ago
6 0

Answer:

Arithmetic: 3, 8, 13, 18,... , 4, 8, 12, 16,...

Geometric: 4, 8, 12, 16,... , 2,6, 18, 54,...

Neither: 5, 10, 20, 30,...

Step-by-step explanation:

An arithmetic sequence is a sequence that grows by addition, a geometric sequence is one that grows by multiplication.

3, 8, 13, 18,... is arithmetic  because you add 5 each time to find the next term of the sequence.

5, 10, 20, 40,... is geometric because you multiply the previous term by a factor of 2 each time to find the next nerm of the sequence.

2,6, 18, 54,... is geometric because you multiply the previous term by a factor of 3 each time to find the next nerm of the sequence.

5, 10, 20, 30,... is neither because it does not follow the pattern set by the rules of geometric or arithmetic sequences.

4, 8, 12, 16,... is arithmetic  because you add 4 each time to find the next term of the sequence.

You might be interested in
Find the greatest common factor of 24xz^2 and 8yz?
julia-pushkina [17]

Answer:

Step-by-step explanation:

8z (3x^2 +y)

5 0
3 years ago
A pool of possible jurors consists of 14 men and 10 women. How many different juries consisting of 5 men and 7 women are possibl
Doss [256]
It is d. 240,240

hope this helps

7 0
3 years ago
Read 2 more answers
Perform the indicated operation. Be sure the answer is reduced.
avanturin [10]
<h3>Given Equation:-</h3>

\boxed{ \rm  \frac{4x^{2}y^{3}z}{9} \times  \frac{45y}{8 {x}^{5} {z}^{5} }}

<h3>Step by step expansion:</h3>

\dashrightarrow \sf\dfrac{4x^{2}y^{3}z}{9} \times  \dfrac{45y}{8 {x}^{5} {z}^{3} }

\\  \\

\dashrightarrow \sf\dfrac{ \cancel4x^{2}y^{3}z}{9} \times  \dfrac{45y}{ \cancel8 {x}^{5} {z}^{3} }

\\  \\

\dashrightarrow \sf\dfrac{x^{2}y^{3}z}{9} \times  \dfrac{45y}{2{x}^{5} {z}^{3} }

\\  \\

\dashrightarrow \sf\dfrac{x^{2}y^{3}z}{ \cancel9} \times  \dfrac{ \cancel{45}y}{2{x}^{5} {z}^{3} }

\\  \\

\dashrightarrow \sf\dfrac{x^{2}y^{3}z}{1} \times  \dfrac{5y}{2{x}^{5} {z}^{3} }

\\  \\

\dashrightarrow \sf\dfrac{x^{0}y^{3}z}{1} \times  \dfrac{5y}{2{x}^{5 - 2} {z}^{3} }

\\  \\

\dashrightarrow \sf\dfrac{y^{3}z}{1} \times  \dfrac{5y}{2{x}^{3} {z}^{3} }

\\  \\

\dashrightarrow \sf\dfrac{y^{3}z {}^{0} }{1} \times  \dfrac{5y}{2{x}^{3} {z}^{3 - 1} }

\\  \\

\dashrightarrow \sf\dfrac{y^{3}}{1} \times  \dfrac{5y}{2{x}^{3} {z}^{2} }

\\  \\

\dashrightarrow \sf  \dfrac{5y \times  {y}^{3} }{2{x}^{3} {z}^{2} }

\\  \\

\dashrightarrow \sf  \dfrac{5y {}^{0}  \times  {y}^{3 + 1} }{2{x}^{3} {z}^{2} }

\\  \\

\dashrightarrow \sf  \dfrac{5 \times  {y}^{4} }{2{x}^{3} {z}^{2} }

\\  \\

\dashrightarrow \bf  \dfrac{5 {y}^{4} }{2{x}^{3} {z}^{2} }

\\  \\

\therefore \underline{ \textbf{ \textsf{option \red c \: is \: correct}}}

8 0
2 years ago
100 POINTS solve the system using linear combination. show all work.{ 5x + 3y = 41 {3x - 6y = 9
PIT_PIT [208]

Answer:

y = 2

x = 7

Explanation:

  • 5x + 3y = 41
  • 3x - 6y = 9

<u>Make the coefficient of "y" in equation 1 same</u>

{ 5x + 3y = 41 } * 2     →  10x + 6y = 82  ........equation 1

                                  →  3x - 6y = 9 ........equation 2

<u>solving them using linear combination</u>

  • 10x + 6y = 82
  • 3x - 6y = 9

     ============

  • 13x = 91
  • x = 7

Find y:

  • 5x + 3y = 41
  • 5(7) + 3y = 41
  • 3y = 41 - 35
  • 3y = 6
  • y = 2
4 0
2 years ago
Read 2 more answers
Integrate e^x(sin(x) cos(x))
Karo-lina-s [1.5K]
I=\int e^x(\sin(x)\cos(x))dx=\int e^x(\frac{1}{2}\sin(2x))dx=\frac{1}{2}\int e^x\sin(2x)dx

\text{If }u=\sin(2x)\to du=2\cos(2x)dx~\text{and}~dv=e^xdx\to v=e^x:\\\\&#10;\text{Using }\int u\,dv=uv-\int v\,du:\\\\&#10;I=\frac{1}{2}(e^x\sin(2x)-\int e^x(2\cos(2x))dx)\\\\&#10;2I=e^x\sin(2x)-2\underbrace{\int e^x\cos(2x)dx}_{I_2}

Looking for I_2:

\text{If}~u=\cos(2x)\to du=-2\sin(2x)dx~\text{and}~dv=e^xdx\to v=e^x:\\\\&#10;I_2=e^x\cos(2x)-\int e^x(-2\sin(2x))dx\\\\ I_2=e^x\cos(2x)+2\int e^x(\sin(2x))dx\\\\  I_2=e^x\cos(2x)+2\int e^x(2\sin(x)\cos(x))dx\\\\ I_2=e^x\cos(2x)+4\int e^x(\sin(x)\cos(x))dx=e^x\cos(2x)+4I

Replacing:

2I=e^x\sin(2x)-2I_2\iff\\\\2I=e^x\sin(2x)-2(e^x\cos(2x)+4I)\iff\\\\&#10;2I=e^x\sin(2x)-2e^x\cos(2x)-8I\iff\\\\&#10;10I=e^x\sin(2x)-2e^x\cos(2x)\iff\\\\&#10;I=\dfrac{e^x}{10}(\sin(2x)-2\cos(2x))\\\\&#10;\boxed{\int e^x(\sin(x)\cos(x))dx=\dfrac{e^x}{10}(\sin(2x)-2\cos(2x))+C}
6 0
3 years ago
Other questions:
  • Ann took a taxi home from the airport. The taxi fare was \$2.10$2.10dollar sign, 2, point, 10 per mile, and she gave the driver
    5·1 answer
  • (-7)^-1 without an exponent
    7·1 answer
  • Round to the nearest thousandth. 4.8493
    15·2 answers
  • Find the area of the regular 18 gon with a radius of 13mm
    5·1 answer
  • Please someone help me
    8·1 answer
  • What is the compound inequality
    6·1 answer
  • What is the numerator called in a percent problem? What is the denominator called in a percent problem ?
    7·1 answer
  • What is the slope of the line that has an x-intercept at x=12 and a y-intercept at y=−20?
    11·1 answer
  • Someone please help me out with this i can't figure out how to do it step by step
    8·2 answers
  • In the previous lesson, you found the equation of a line to represent the association between latitude and temperature. This is
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!