Answer:
1/2
Step-by-step explanation:
In the straight line form...
y=mx+b
m is the constant of proportionality or the "K"
1)
here, we do the left-hand-side
![\bf [sin(x)+cos(x)]^2+[sin(x)-cos(x)]^2=2 \\\\\\\ [sin^2(x)+2sin(x)cos(x)+cos^2(x)]\\\\+~ [sin^2(x)-2sin(x)cos(x)+cos^2(x)] \\\\\\ 2sin^2(x)+2cos^2(x)\implies 2[sin^2(x)+cos^2(x)]\implies 2[1]\implies 2](https://tex.z-dn.net/?f=%5Cbf%20%5Bsin%28x%29%2Bcos%28x%29%5D%5E2%2B%5Bsin%28x%29-cos%28x%29%5D%5E2%3D2%0A%5C%5C%5C%5C%5C%5C%5C%0A%5Bsin%5E2%28x%29%2B2sin%28x%29cos%28x%29%2Bcos%5E2%28x%29%5D%5C%5C%5C%5C%2B~%20%5Bsin%5E2%28x%29-2sin%28x%29cos%28x%29%2Bcos%5E2%28x%29%5D%0A%5C%5C%5C%5C%5C%5C%0A2sin%5E2%28x%29%2B2cos%5E2%28x%29%5Cimplies%202%5Bsin%5E2%28x%29%2Bcos%5E2%28x%29%5D%5Cimplies%202%5B1%5D%5Cimplies%202)
2)
here we also do the left-hand-side
![\bf \cfrac{2-cos^2(x)}{sin(x)}=csc(x)+sin(x) \\\\\\ \cfrac{2-[1-sin^2(x)]}{sin(x)}\implies \cfrac{2-1+sin^2(x)}{sin(x)}\implies \cfrac{1+sin^2(x)}{sin(x)} \\\\\\ \cfrac{1}{sin(x)}+\cfrac{sin^2(x)}{sin(x)}\implies csc(x)+sin(x)](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7B2-cos%5E2%28x%29%7D%7Bsin%28x%29%7D%3Dcsc%28x%29%2Bsin%28x%29%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7B2-%5B1-sin%5E2%28x%29%5D%7D%7Bsin%28x%29%7D%5Cimplies%20%5Ccfrac%7B2-1%2Bsin%5E2%28x%29%7D%7Bsin%28x%29%7D%5Cimplies%20%5Ccfrac%7B1%2Bsin%5E2%28x%29%7D%7Bsin%28x%29%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7B1%7D%7Bsin%28x%29%7D%2B%5Ccfrac%7Bsin%5E2%28x%29%7D%7Bsin%28x%29%7D%5Cimplies%20csc%28x%29%2Bsin%28x%29)
3)
here, we do the right-hand-side
74 is what percent of 95?
74 is P% of 95
Equation: Y = P% * X
Solving our equation for P
P% = Y/X
P% = 74/95
p = 0.7789
Convert decimal to percent:
<span>P% = 0.7789 * 100 = 77.89%
</span>
Hope I helped!
Let me know if you need anything else!
~ Zoe
The initial step that must be taken before solving almost any problem is to understand what the problem is asking for us to do and what is provided to us to complete that goal. Looking at the problem statement, we can see that we are being requested to solve for h and we are provided an expression to do so. Let's begin solving the expression by combining like terms.
<u>Combine like terms</u>
Just a quick explanation on what combine like terms means, it basically just means to combine the coefficients of the numbers associated with the same variables. Like in this example we can combine h and -3h because they have have the variable h associated with them.
<u>Add 8 to both sides</u>
<u>Divide both sides by -2</u>
<u>Simplify the expression</u>
Therefore, after completing the steps above we were able to determine that the value of h is equal to -11.