Let 3<em>n</em> + 1 denote the "number" in question. The claim is that
(3<em>n</em> + 1)² = 3<em>m</em> + 1
for some integer <em>m</em>.
Now,
(3<em>n</em> + 1)² = (3<em>n</em>)² + 2 (3<em>n</em>) + 1²
… = 9<em>n</em>² + 6<em>n</em> + 1
… = 3<em>n</em> (3<em>n</em> + 2) + 1
… = 3<em>m</em> + 1
where we take <em>m</em> = <em>n</em> (3<em>n</em> + 2).
Okay here:
Let L be the length and W the width of the rectangle.
1. w=2•L
2. 2L+2W=36
Substitute eq. 1 into eq. 2,
2L+2•(2•L)=36
2L+4L=36
6L=36
L=9
Not done yet, then from eq. 1,
W=2•L
W=2•9
W=18 <------- Your answer. :)
18 high resolution photos
36 low resolution photos
Answer: B
Step-by-step explanation:
Answer:
Step-by-step explanation:
X = 1/2 arc QS
arc QS is
360 =145+105+QS
110 = QS
so X is 1/2 QS
X= 55°