Answer:
Gọi AH là đường cao kẻ từ A đến BC
Xét tam giác AHC vuông tại H
Suy ra AH = HC. cotA= 9.cot35° = 12,9
Xét tam giác AHB vuông tại H
Suy ra BH = AH.tanA = 12,9.tan61°=23,37
Ta có BC= HC+ HB= 9+23,27 =32,27
Diện tích tam giác ABC = 1/2 × AH ×BC= 1/2 ×12,9×32,27=208,1415
4 x p - 9 = 3 x p + 6
Hope it helped
#3. Plugging the point (3,0) into any of the equations except the third one gives an invalid answer.
Step-by-step explanation:
The nth term of a geometric progression can be determined by using the formula:
Tn=arn−1
where: a = first term and r = common ratio
Substitute the given values of first term and common ratio into the formula:
Tn=arn−1
T5=(40)(0.5)5−1
T5=(40)(0.5)4
T5=(40)(0.0625)
T5=2.5