A basic law of geochronology, stating that in any undisturbed sequence of rocks deposited in layers, youngest layer on top of older layer
Hope that helped
Answer:
<em>See explanation</em>
Explanation:
Given
Represent the vertical angle with ![\theta](https://tex.z-dn.net/?f=%5Ctheta)
![\theta = 75](https://tex.z-dn.net/?f=%5Ctheta%20%3D%2075)
The question has incomplete details because the length of the ladder is not given; neither is the distance between the ladder and the wall given.
<em>See attachment for illustration</em>
So, this solution will be based on assumptions.
Represent
- The height from ground to the top of the ladder with y
- The length of the ladder with L
- The distance between the ladder and the wall with x
Carla could solve for y in any of the following ways:
1. Tan formula
![tan \theta = \frac{opp}{adj}](https://tex.z-dn.net/?f=tan%20%5Ctheta%20%3D%20%5Cfrac%7Bopp%7D%7Badj%7D)
In this case:
![tan \theta = \frac{x}{y}](https://tex.z-dn.net/?f=tan%20%5Ctheta%20%3D%20%5Cfrac%7Bx%7D%7By%7D)
Multiply both sides by y
![y * tan \theta = \frac{x}{y} * y](https://tex.z-dn.net/?f=y%20%2A%20tan%20%5Ctheta%20%3D%20%5Cfrac%7Bx%7D%7By%7D%20%2A%20y)
![y * tan \theta = x](https://tex.z-dn.net/?f=y%20%2A%20tan%20%5Ctheta%20%3D%20x)
Divide both sides by tan
![y = \frac{x}{tan \theta}](https://tex.z-dn.net/?f=y%20%20%20%3D%20%5Cfrac%7Bx%7D%7Btan%20%5Ctheta%7D)
![y = \frac{x}{tan 75}](https://tex.z-dn.net/?f=y%20%20%20%3D%20%5Cfrac%7Bx%7D%7Btan%2075%7D)
This can be used if the distance (x) between the ladder and the wall is known.
Assume x = 15
![y = \frac{15}{tan 75}](https://tex.z-dn.net/?f=y%20%20%20%3D%20%5Cfrac%7B15%7D%7Btan%2075%7D)
![y = 4.02](https://tex.z-dn.net/?f=y%20%3D%204.02)
2. Cosine formula
![cos \theta = \frac{adj}{hyp}](https://tex.z-dn.net/?f=cos%20%5Ctheta%20%3D%20%5Cfrac%7Badj%7D%7Bhyp%7D)
In this case:
![cos \theta = \frac{y}{L}](https://tex.z-dn.net/?f=cos%20%5Ctheta%20%3D%20%5Cfrac%7By%7D%7BL%7D)
Multiply both sides by L
![L * cos \theta = \frac{y}{L} * L](https://tex.z-dn.net/?f=L%20%2A%20cos%20%5Ctheta%20%3D%20%5Cfrac%7By%7D%7BL%7D%20%2A%20L)
![Lcos \theta = y](https://tex.z-dn.net/?f=Lcos%20%5Ctheta%20%3D%20y)
![y = Lcos \theta](https://tex.z-dn.net/?f=y%20%3D%20Lcos%20%5Ctheta)
![y = Lcos75](https://tex.z-dn.net/?f=y%20%3D%20Lcos75)
This can be used if the length (L) of the ladder is known.
Assume L = 15
![y = 15 * cos75](https://tex.z-dn.net/?f=y%20%3D%2015%20%2A%20cos75)
![y = 3.88](https://tex.z-dn.net/?f=y%20%3D%203.88)
Answer:
a
Explanation:
eight weeks ago by Mr John and the surrounding area