Answer:
15
Step-by-step explanation:
The equation for the area of a triangle is A= b*h /2. So, plug in your known variables, and you get 270in^2= b*30 /2. First you multiply by 2 to cancel out the division for 2, which gets you 540= b* 30. To get "b" by itself, divide both sides by 30, giving you <u>18=b</u>.
To check this, plug in your new known variable, as 270= 18* 30 /2. This will equal as 270=270, confirming 18in as the correct measurement.
Answer:
42
Step-by-step explanation:
6*(-3) = (-18)
24-(-18) = 42
Part I
We have the size of the sheet of cardboard and we'll use the variable "x" to represent the length of the cuts. For any given cut, the available distance is reduced by twice the length of the cut. So we can create the following equations for length, width, and height.
width: w = 12 - 2x
length: l = 18 - 2x
height: h = x
Part II
v = l * w * h
v = (18 - 2x)(12 - 2x)x
v = (216 - 36x - 24x + 4x^2)x
v = (216 - 60x + 4x^2)x
v = 216x - 60x^2 + 4x^3
v = 4x^3 - 60x^2 + 216x
Part III
The length of the cut has to be greater than 0 and less than half the length of the smallest dimension of the cardboard (after all, there has to be something left over after cutting out the corners). So 0 < x < 6
Let's try to figure out an x that gives a volume of 224 in^3. Since this is high school math, it's unlikely that you've been taught how to handle cubic equations, so let's instead look at integer values of x. If we use a value of 1, we get a volume of:
v = 4x^3 - 60x^2 + 216x
v = 4*1^3 - 60*1^2 + 216*1
v = 4*1 - 60*1 + 216
v = 4 - 60 + 216
v = 160
Too small, so let's try 2.
v = 4x^3 - 60x^2 + 216x
v = 4*2^3 - 60*2^2 + 216*2
v = 4*8 - 60*4 + 216*2
v = 32 - 240 + 432
v = 224
And that's the desired volume.
So let's choose a value of x=2.
Reason?
It meets the inequality of 0 < x < 6 and it also gives the desired volume of 224 cubic inches.
Consider the contrapositive of the statement you want to prove.
The contrapositive of the logical statement
<em>p</em> ⇒ <em>q</em>
is
¬<em>q</em> ⇒ ¬<em>p</em>
In this case, the contrapositive claims that
"If there are no scalars <em>α</em> and <em>β</em> such that <em>c</em> = <em>α</em><em>a</em> + <em>β</em><em>b</em>, then <em>a₁b₂</em> - <em>a₂b₁</em> = 0."
The first equation is captured by a system of linear equations,

or in matrix form,

If this system has no solution, then the coefficient matrix on the right side must be singular and its determinant would be

and this is what we wanted to prove. QED