1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PolarNik [594]
3 years ago
12

Can pleasant smells improve​ learning? Researchers timed 21 subjects as they tried to complete​ paper-and-pencil mazes. Each sub

ject attempted a maze both with and without the presence of a floral aroma. Subjects were randomized with respect to whether they did the scented trial first or second. Suppose a paired​ t-test is to be performed to determine whether there is evidence to indicate that the time to complete the maze is faster in scented trials compared to unscented​ trials, on average. For what population can a conclusion be​ made?
Time to complete the maze (seconds)
Unscented 30.2 56.7 51.9 32.2 64.8 42.9 42.7 44.8 25.1 59.2
Scented 25.7 41.9 42.4 34.4 64.7 31.4 40.1 43.2 33.9 40.4
A) Type of Test and Requirements: State the question you are investigating and the type of test that is appropriate for the problem along with the Requirements for the type of test you will be performing. Explain how each of the Requirements are met.
B) Hypotheses: Write the Null and Alternative hypothesis both in words and in symbols.
C) Mechanics: Use the Calculator – include in your answer the type of test, values you entered and your results (test statistic, p-value)
D) Conclusion: State your conclusion (include reject or fail to reject the null hypothesis along with your statement in terms of the problem context and the p-value).
E) Confidence Interval: Find the appropriate (depends upon one or two- tailed test) confidence interval that matches the test and significance level for each problem. Explain how the results of the confidence interval support your hypothesis test conclusion in step 4
Mathematics
1 answer:
matrenka [14]3 years ago
8 0

Answer:

a) This is a paired t-test, in which we test the sample of the difference for each pair.

The requirements are:

- The dependant variable must be continous, as we have to calculate the difference. The dependant variable (time) is continous.

- The observations are independent of each other. Although it is not explicitly written, we assumed that the subjects results are independent.

- The dependent variable should be approximately normally distributed. This is assumed.

- The dependent variable should not contain any outliers. No outliers are seen in the data.

b)  The null and alternative hypothesis are:

H_0: \mu_d=0\\\\H_a:\mu_d> 0

The alternative hypothesis states that the mean difference between the two scenarios is significantly higher than zero.

The null hypothesis states that the mean difference between the two scenarios is not significantly higher than zero.

c) Test statistic t = 1.96

P-value = 0.041

d) As the P-value (0.041) is smaller than the significance level (0.05), the effect is  significant.

The null hypothesis is rejected.

There is enough evidence to support the claim that the true difference in the time of the unscented trial and the scented trial is significantly higher than zero.

e) The one-sided upper 95% confidence bound for this example is 0.33 seconds.

As the (lower) bound of the confidence interval is grater than 0, we are 95% confident that the true difference is higher than 0 with 95% confidence.

This is equivalent to the conclusion of the hypothesis test, stating that the true difference is significantly higher than 0.

Step-by-step explanation:

This is a paired t-test, so the sample we will use to perform the hypothesis test is the difference between the time to complete the mazed in scented trials and unscented trials.

The difference of each subject is:

d_i=X_{Ui}-X_{Si}

For example, for the first subject, we have:

d_1=X_{U1}-X_{S1}=30.2-25.7=4.5

Then, the sample of the difference is [4.5, 14.8, 9.5, -2.2, 0.1, 11.5, 2.6, 1.6, -8.8, 18.8 ].

The sample mean of the difference is:

M=\dfrac{1}{10}\sum_{i=1}^{10}(4.5+14.8+9.5+(-2.2)+0.1+11.5+2.6+1.6+(-8.8)+18.8)\\\\\\ M=\dfrac{52.4}{10}=5.2

The sample standard deviation is:

s=\sqrt{\dfrac{1}{(n-1)}\sum_{i=1}^{10}(x_i-M)^2}\\\\\\s=\sqrt{\dfrac{1}{9}\cdot [(4.5-(5.2))^2+...+(18.8-(5.2))^2]}\\\\\\            s=\sqrt{\dfrac{1}{9}\cdot [(0.548)+...+(183.87)]}\\\\\\s=\sqrt{\dfrac{632.264}{9}}=\sqrt{70.25}\\\\\\s=8.4

Now, we can perform hypothesis test for the population difference.

The claim is that the true difference in the time of the unscented trial and the scented trial is significantly higher than zero.

Then, the null and alternative hypothesis are:

H_0: \mu_d=0\\\\H_a:\mu_d> 0

The significance level is 0.05.

The sample has a size n=10.

The sample mean is M=5.2.

As the standard deviation of the population is not known, we estimate it with the sample standard deviation, that has a value of s=8.4.

The estimated standard error of the mean is computed using the formula:

s_M=\dfrac{s}{\sqrt{n}}=\dfrac{8.4}{\sqrt{10}}=2.66

Then, we can calculate the t-statistic as:

t=\dfrac{M-\mu}{s/\sqrt{n}}=\dfrac{5.2-0}{2.66}=\dfrac{5.2}{2.66}=1.96

The degrees of freedom for this sample size are:

df=n-1=10-1=9

This test is a right-tailed test, with 9 degrees of freedom and t=1.96, so the P-value for this test is calculated as (using a t-table):

\text{P-value}=P(t>1.96)=0.041

As the P-value (0.041) is smaller than the significance level (0.05), the effect is  significant.

The null hypothesis is rejected.

There is enough evidence to support the claim that the true difference in the time of the unscented trial and the scented trial is significantly higher than zero.

E) We have to calculate a one-side 95% confidence interval for the mean difference.

The population standard deviation is not known, so we have to estimate it from the sample standard deviation and use a t-students distribution to calculate the critical value.

The t-value for a right-tailed 95% confidence interval and 9 degrees of freedom is t=1.83.

The margin of error (MOE) can be calculated as:

MOE=t\cdot s_M=1.83 \cdot 2.66=4.87

Then, the lower bound of the confidence interval is:

LL=M-t \cdot s_M = 5.2-4.87=0.33

The one-sided upper 95% confidence bound for this example is 0.33 seconds.

You might be interested in
The sign of the product of –35 and –625 is
Anarel [89]

Step-by-step explanation:

The mathematical sign for the operation is subtraction.

<em>To</em><em> </em><em>Solve</em><em> </em><em>This</em><em> </em><em>You</em><em> </em><em>Will</em><em> </em><em>Need</em><em> </em><em>To</em><em>;</em>

<em>1</em><em>]</em><em> </em><em>The</em><em> </em><em>sign</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>product</em><em> </em><em>of</em><em> </em><em>-</em><em>3</em><em>5</em><em> </em><em>and </em><em>-</em><em>6</em><em>2</em><em>5</em><em> </em><em>is</em><em>;</em>

<em>It's</em><em> </em><em>going </em><em>to</em><em> </em><em>be</em><em>;</em>

<em>-</em><em>3</em><em>5</em><em>-</em><em>-</em><em>6</em><em>2</em><em>5</em>

<em>The</em><em> </em><em>negative</em><em> </em><em>sign</em><em> </em><em>will</em><em> </em><em>turn</em><em> </em><em>into </em><em>addition </em><em>sign</em><em> </em><em>before </em><em>you </em><em>can </em><em>operate</em><em> </em><em>it</em><em>.</em><em> </em><em>So </em><em>it</em><em>'s</em><em> </em><em>going</em><em> </em><em>to </em><em>be</em><em>;</em>

<em>-</em><em>3</em><em>5</em><em>+</em><em>6</em><em>2</em><em>5</em><em>=</em><em>5</em><em>9</em><em>0</em><em>(</em><em>positive</em><em>)</em>

<em>It's</em><em> </em><em>just</em><em> </em><em>like</em><em> </em><em>subtracting </em><em>3</em><em>5</em><em> </em><em>from</em><em> </em><em>6</em><em>2</em><em>5</em><em>.</em>

<em>2</em><em>]</em><em> </em><em>The </em><em>sign</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>product</em><em> </em><em>of </em><em>2</em><em>6</em><em>3</em><em> </em><em>and</em><em> </em><em>0</em><em> </em><em>is</em><em>;</em>

<em>2</em><em>6</em><em>3</em><em>-</em><em>0</em>

<em>With </em><em>this</em><em> </em><em>no</em><em> </em><em>qua</em><em>n</em><em>t</em><em>i</em><em>t</em><em>y</em><em> </em><em>is</em><em> </em><em>going</em><em> </em><em>to</em><em> </em><em>be</em><em> </em><em>subtracted </em><em>so</em><em> </em><em>the</em><em> </em><em>2</em><em>6</em><em>3</em><em> </em><em>will</em><em> </em><em>remain</em><em> </em><em>the</em><em> </em><em>same</em><em>.</em><em> </em>

<em>So</em><em> </em><em>2</em><em>6</em><em>3</em><em>-</em><em>0</em><em>=</em><em>2</em><em>6</em><em>3</em><em>(</em><em>positive</em><em>)</em>

<em>3</em><em>]</em><em> </em><em>The</em><em> </em><em>sign</em><em> </em><em>of </em><em>the</em><em> </em><em>product</em><em> </em><em>of</em><em> </em><em>-</em><em>2</em><em>1</em><em> </em><em>and</em><em> </em><em>4</em><em>5</em><em>1</em><em> </em><em>is</em><em>;</em>

<em>-</em><em>2</em><em>1</em><em>-</em><em>4</em><em>5</em><em>1</em>

<em>With </em><em>this</em><em> </em><em>you </em><em>won't</em><em> </em><em>subtract</em><em> </em><em>but</em><em> </em><em>rather</em><em> </em><em>you'll</em><em> </em><em>add</em><em> </em><em>and</em><em> </em><em>when</em><em> </em><em>you</em><em> </em><em>add</em><em> </em><em>the</em><em> </em><em>answer</em><em> </em><em>is</em><em> </em><em>going </em><em>to</em><em> </em><em>be</em><em> </em><em>-</em><em>4</em><em>7</em><em>2</em>

<em>-</em><em>4</em><em>7</em><em>2</em><em>(</em><em>negative</em><em>)</em>

<em>4</em><em>]</em><em> </em><em>The</em><em> </em><em>sign </em><em>of</em><em> </em><em>the</em><em> </em><em>product </em><em>of</em><em> </em><em>-</em><em>3</em><em>5</em><em>0</em><em> </em><em>and</em><em> </em><em>8</em><em>9</em><em> </em><em>is</em><em>;</em>

<em>-</em><em>3</em><em>5</em><em>0</em><em>-</em><em>8</em><em>9</em>

<em>With </em><em>this</em><em> </em><em>you</em><em> </em><em>will</em><em> </em><em>add</em><em> </em><em>it</em><em> </em><em>but</em><em> </em><em>you </em><em>won't</em><em> </em><em>subtract</em><em> </em><em>the</em><em> </em><em>negatives </em><em>so</em><em> </em><em>it's</em><em> </em><em>going</em><em> </em><em>to </em><em>be</em><em>;</em>

<em>-</em><em>3</em><em>5</em><em>0</em><em>-</em><em>8</em><em>9</em><em>=</em><em>-</em><em>4</em><em>3</em><em>9</em><em>(</em><em>negative</em><em>)</em>

<em>Hope </em><em>I</em><em> </em><em>am</em><em> </em><em>Correct </em><em>I</em><em> </em><em>didn't</em><em> </em><em>really</em><em> </em><em>understand</em><em> </em><em>your</em><em> </em><em>question</em><em> </em><em>well</em><em>.</em><em> </em><em>But</em><em> </em><em>Good</em><em> </em><em>Luck</em><em>:</em><em>)</em>

3 0
3 years ago
Read 2 more answers
Can the number 12 be apart of more than one fact family? Explain.
Rom4ik [11]

Yes, 12 can be a part of more than one fact family because the fact family 3*4 or 6*2 or 9+3.

7 0
4 years ago
Read 2 more answers
Put the following equation of a line into slope-intercept form, simplifying al
Ray Of Light [21]

Answer:

Step-by-step explanation:

Simplifying

2y + -3x = 18

Reorder the terms:

-3x + 2y = 18

Solving

-3x + 2y = 18

Solving for variable 'x'.

Move all terms containing x to the left, all other terms to the right.

Add '-2y' to each side of the equation.

-3x + 2y + -2y = 18 + -2y

Combine like terms: 2y + -2y = 0

-3x + 0 = 18 + -2y

-3x = 18 + -2y

Divide each side by '-3'.

x = -6 + 0.6666666667y

Simplifying

x = -6 + 0.6666666667y

5 0
4 years ago
Find the product.<br> 10(-7)
GuDViN [60]

Answer:

-70

Step-by-step explanation:

If a number is right by a parathesis () then you multiply the number inside the parathesis by the number next to them.

8 0
3 years ago
Read 2 more answers
A projectile is fired with muzzle speed 220 m/s and an angle of elevation 45° from a position 30 m above ground level. Where doe
Allushta [10]

Answer:

  • 4968.6 m from where it was fired
  • 221.33 m/s

Step-by-step explanation:

For the purpose of this problem, we assume ballistic motion over a stationary flat Earth under the influence of gravity, with no air resistance.

We can divide the motion into two components, one vertical and one horizontal. For muzzle speed s and launch angle θ, the horizontal speed is presumed constant at s·cos(θ). The initial vertical speed is then s·sin(θ) and the (x, y) coordinates as a function of time are ...

  (x, y) = (s·cos(θ)·t, -4.9t² +s·sin(θ)·t + h₀) . . . . . where h₀ is the initial height

To find the range, we can solve the equation y=0 for t, and use this value of t to find x.

Using the quadratic formula, we find t at the time of landing to be ...

  t = (-s·sin(θ) - √((s·sin(θ))²-4(-4.9)(h₀)))/(2(-4.9))

  t = (s/9.8)(sin(θ) +√(sin(θ)² +19.6h₀/s²))

For s = 220, θ = 45°, and h₀ = 30, the time of flight is ...

  t ≈ 31.939 seconds

Then the horizontal travel is

  x = 220·cos(45°)·31.939 ≈ 4968.6 . . . . meters

__

As it happens, the value under the radical in the above expression for time, when multiplied by s, is the vertical speed at landing. The horizontal speed remains s·cos(θ), so the resultant speed is the Pythagorean sum of these:

  landing speed = s·√(cos(θ)² +sin(θ)² +19.6h₀/s²) ≈ s√(1 +0.012149)

  ≈ 221.33 m/s

_____

Note that the landing speed represents the speed the projectile has as a consequence of the potential energy of its initial height being converted to kinetic energy that adds to the kinetic energy due to its initial muzzle velocity.

6 0
3 years ago
Other questions:
  • What is the solution to the equation 3(x – 1) – 2(2x + 1) = 8(x – 1)?
    8·2 answers
  • A car's speed is 45 miles per hour. How far will it go in 4 hours and 20 mins?
    15·2 answers
  • Which is better to by 24 ounce for $3.89 or a 36 ounce for $4.89
    5·1 answer
  • A line contains the points S (4, -10) and B (10, -16). Find the slope of ̅̅̅̅SB. Must show your work to receive full credit.
    8·1 answer
  • TION 3<br>(x-7)(x - 5) = 3<br>(r-5)​
    6·1 answer
  • 8. In rectangle ABCD, the length of AC – 20 units and BD = 8 units. In rectangle EFGH, the
    10·1 answer
  • Point G lies between points F and H on Line segment F H.
    12·1 answer
  • What is Two-thirds divided by StartFraction 4 Over 5 EndFraction?
    9·1 answer
  • What is an equation of the axis of symmetry for the parabola whose equation is y=2x^2 + 8x-1
    8·1 answer
  • Time to use my tools
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!