Answer:
(A) We are using them faster than they are replenished by nature
Answer:
ΔD = 2.29 10⁻⁵ m
Explanation:
This is a problem of thermal expansion, if the temperature changes are not very large we can use the relation
ΔA = 2α A ΔT
the area is
A = π r² = π D² / 4
we substitute
ΔA = 2α π D² ΔT/4
as they do not indicate the initial temperature, we assume that ΔT = 75ºC
α = 1.7 10⁻⁵ ºC⁻¹
we calculate
ΔA = 2 1.7 10⁻⁵ pi (1.8 10⁻²) ² 75/4
ΔA = 6.49 10⁻⁷ m²
by definition
ΔA = A_f- A₀
A_f = ΔA + A₀
A_f = 6.49 10⁻⁷ + π (1.8 10⁻²)² / 4
A_f = 6.49 10⁻⁷ + 2.544 10⁻⁴
A_f = 2,551 10⁻⁴ m²
the area is
A_f = π D_f² / 4
A_f =
D_f =
D_f = 1.80229 10⁻² m
the change in diameter is
ΔD = D_f - D₀
ΔD = (1.80229 - 1.8) 10⁻² m
ΔD = 0.00229 10⁻² m
ΔD = 2.29 10⁻⁵ m
Answer:
B. If the container is cooled, the gas particles will lose kinetic energy and temperature will decrease.
C. If the gas particles move more quickly, they will collide more frequently with the walls of the container and pressure will increase.
E. If the gas particles move more quickly, they will collide with the walls of the container more often and with more force, and pressure will increase.
#FreeMelvin
Matter can be many things, but is mostly made of atoms. Atoms are small things that cannot be seen directly, as lights either passes through it or alters it. However, we know that atoms are made of 3 parts, those being the proton, neutron, and electron.
Protons have a positive electromagnetic charge.
Neutrons have no charge.
Electrons have a negative charge equal to the protons positive charge.
Protons and neutrons make up what's called the nucleus, which is orbited by the electrons.
Protons and neutrons also share another thing in common, that being their composition.
Until relatively recently, we thought that these were the smallest particles in the universe, and indestructible. However, modern discoveries have revealed that they are actually made of quarks and gluons.
These are actually indestructible, being part of the group that is elementary particles.