Answer:
Step-by-step explanation:
<u>System of Equations</u>
Let's call:
x = number of nickels in the student's pocket
y = number of dimes in the student's pocket
Each nickel has a value of $0.05, so x nickels have a value of 0.05x
Each dime has a value of $0.10, so y dimes have a value of 0.10y
The student has a total of 10 coins, thus:
The total value of the coins is $0.85, thus
The system of linear equations that represents this scenario is:
Answer:
Step-by-step explanation:
<h3>to understand this</h3><h3>you need to know about:</h3>
<h3>given:</h3>
<h3>let's solve:</h3>
Answer:
The values of x and y are x = 6 and y = 9
Step-by-step explanation:
MNOP is a parallelogram its diagonal MO and PN intersected at point A
In any parallelogram diagonals:
- Bisect each other
- Meet each other at their mid-point
In parallelogram MNOP
∵ MO and NP are its diagonal
∵ MO intersect NP at point A
- Point A is the mid-point pf them
∴ MO and NP bisect each other
∴ MA = AO
∴ PA = AN
∵ MA = x + 5
∵ AO = y + 2
- Equate them
∴ x + 5 = y + 2 ⇒ (1)
∵ PA = 3x
∵ AN = 2y
- Equate them
∴ 2y = 3x
- Divide both sides by 2
∴ y = 1.5x ⇒ (2)
Now we have a system of equations to solve it
Substitute y in equation (1) by equation (2)
∴ x + 5 = 1.5x + 2
- Subtract 1.5x from both sides
∴ - 0.5x + 5 = 2
- Subtract 5 from both sides
∴ - 0.5x = -3
- Divide both sides by - 0.5
∴ x = 6
- Substitute the value of x in equation (2) to find y
∵ y = 1.5(6)
∴ y = 9
The values of x and y are x = 6 and y = 9
Because this is a positive parabola, it opens upwards, like a cup, and the vertex dictates what the minimum value of the function is. In order to determine the vertex, I recommend completing the square. Do that by first setting the function equal to 0 and then moving the 9 to the other side by subtraction. So far:
. Now, to complete the square, take half the linear term, square it, and add that number to both sides. Our linear term is 6. Half of 6 is 3 and 3 squared is 9. So add 9 to both sides.
. The right side reduces to 0, and the left side simplifies to the perfect square binomial we created while completing this process.
. Move the 0 back over and the vertex is clear now. It is (-3, 0). Therefore, 0 is the minimum point on your graph. The first choice above is the one you want.
This function would have a maximum.
Since we are subtracting by a -4 for each increase in x, we know that the numbers will continue to go down. Given this fact, we know the number will never be higher than when we started, but the number could go infinitely low. As a result we have a maximum and no minimum.