Hi there!
The question gives us the quadratic equation , and it tells us to solve it using the quadratic formula, which goes as . However, we must first find the values of a, b, and c. The official quadratic equation goes as , which matches the format of the given quadratic equation. Hence, the value of a would be 1, the value of b would be 5, and the value of c would be 3. Now, just plug it back into the quadratic equation and simplify to get the zeros of the equation.
x = \frac{-b \pm \sqrt{b^2 - 4ac} }{2a}
x = \frac{-(5) \pm \sqrt{(5)^2 - 4(1)(3)} }{2(1)}
x = \frac{-5 \pm \sqrt{25 - 12} }{2}
x = \frac{-5 \pm \sqrt{13} }{2}
x = \frac{-5 \pm 3.61 }{2}
x = \frac{-5 + 3.61 }{2}, x = \frac{-5 - 3.61 }{2}
x=-0.695 \ \textgreater \ \ \textgreater \ -0.7, x= -4.305 \ \textgreater \ \ \textgreater \ x=-4.31
Therefore, the solutions to the quadratic equation are x = -0.7 and x = -4.31. Hope this helped and have a phenomenal day!
Your answer is 4.31
Answer:
a. x² + 10x + 25
Step-by-step explanation:
because
(x + 5)² = (x + 5)(x + 5) = x² + 5x + 5x + 25 = x² + 10x + 25
so, it is a perfect square of (x + 5).
The dog is able to run around in a circle with a radius of9 ft.
The area of a circle is A = pi r^2
A = (3.14) (9)^2
A= (3.14)(81)
A= 254.34 sq ft
Answer:
f(g(x)) = x
Explanation:
In order to prove that one function is the inverse of the other, all you have to do is substitute in the main function with the inverse one and solve. If the result is x, then it is verified that one function is the inverse of the other.
Now for the given functions we have:
<span>f(x) =5x-25
</span><span>g(x) = (1/5)x+5
We want to prove that g(x) is the inverse of f(x).
Substitute in the above formula and compute the result as follows:
f(g(x)) = 5(</span>(1/5)x+5) - 25
= x + 25 - 25
= x
The final result is "x", therefore, it is verified that g(x) is the inverse of f(x)
Hope this helps :)