The blanks in this two-column proof should be filled as follows:
<u>Statements Reasons</u>_______________
m∠1 = m∠3 Given
m∠CBA = m∠ABE + m∠CBD Angle Addition Postulate
m∠ABE = m∠3 + m∠2 Substitution Property of Equality
m∠CBD = m∠3 + m∠2 Substitution Property of Equality
m∠ABE ≅ m∠CBD Transitive Property of Equality
<h3>What is the Angle Addition Postulate?</h3>
In Mathematics, the Angle Addition Postulate states that the measure of an angle formed by two (2) angles that are placed side by side to each other is equal to the sum of the measures of the two (2) angles.
This ultimately implies that, the Angle Addition Postulate can be used to determine the measurement of a missing angle in a geometric figure or it can be used for calculating an angle that is formed by two (2) or more angles such as m∠CBA = m∠ABE + m∠CBD.
Read more on Angle Addition Postulate here: brainly.com/question/24746945
#SPJ1
The Method is that you add 1 block horizontally to the 2nd row of the figure every time you make a new one.
Answer:
122*
122 degrees
Step-by-step explanation:
m∠GEF is 13 less than 5 times m∠DEG and m∠DEF = 149*
Solution:
As per given data,
m∠GEF = 5m∠DEG - 13* … (i)
m∠DEF = 149* -> m∠GEF + m∠DEG = 149* .. (ii)
Substituting value of m∠GEF in (ii)
We get,
(5m ∠DEG - 13*) + m∠DEG = 149*
6m ∠DEG - 13* = 149*
6m ∠DEG = 149* + 13* = 162*
m∠DEG = * = 27*
Substituting value of m∠DEG in (i)
We get,
m∠GEF = 5(27*) - 13*
m∠GEF = 135* - 13* = 122*
Answer:
0.4
Step-by-step explanation:
Given
60 % wear neither ring nor a necklace
20 % wear a ring
30 % wear necklace
This question can be Solved by using Venn diagram
If one person is choosen randomly among the given student the probability that this student is wearing a ring or necklace is


The sum of probabilty is equal to 1 because it completes the set
Therefore the required probabilty is 0.4