Answer:
SEM ANSWER
Explanation:
Electron microscopy is a powerful tool in the field of microbiology. It has played a key role in the rapid diagnosis of viruses in patient samples and has contributed significantly to the clarification of virus structure and function, helping to guide the public health response to emerging viral infections. In the present study, we used scanning electron microscopy (SEM) to study the infectious cycle of SARS-CoV-2 in Vero E6 cells and we controlled some key findings by classical transmission electronic microscopy (TEM). The replication cycle of the virus was followed from 1 to 36 h post-infection. Our results revealed that SARS-CoV-2 infected the cells through membrane fusion. Particles are formed in the peri-nuclear region from a budding of the endoplasmic reticulum-Golgi apparatus complex into morphogenesis matrix vesicae. New SARS-CoV-2 particles were expelled from the cells, through cell lysis or by fusion of virus containing vacuoles with the cell plasma membrane. Overall, this cycle is highly comparable to that of SARS-CoV. By providing a detailed and complete SARS-CoV-2 infectious cycle, SEM proves to be a very rapid and efficient tool compared to classical TEM.
An athlete would have a larger vital capacity than a non-athlete aerobic ability would find people with larger lungs and hence a bigger vital capacity. The vital capacity of an athlete is higher than a non-athlete because they are trying to do hard work their legs to get bigger and bigger over time making it easier for them
The surface temperature of white dwarf stars is higher than that of red super giants. White dwarf stars are extremely hot when they form, and they start cooling off as time goes by. Red supergiants, on the other hand, are enormous dying stars, and they are quite cool. So, having this in mind, white dwarves are hotter than red supergiants. Hope I helped! :) If it’s wrong then I’m sorry!
Hey friends
The answer would be science is a process used to gather knowledge
~Katie
D because this is the process of when the nitrogenous bases are going to match each other to form our DNA sequence