Answer:
z(s)  is in the rejection zone , therefore we reject H₀
We have enough evidence to claim the proportion of individuals who attended college and believe in extraterrestrials is bigger than 37%
Step-by-step explanation:
We have a prortion test.
P₀  =  37 %         P₀  = 0,37
sample size  =  n  =  100
P sample proportion   =   P  = 47 %        P  =  0,47
confidence interval  95 %
α  =   0,05   
One tail-test  (right tail) our case is to show if sample give enough information to determine if proportion of individual who attended college is higher than the proportion found by Harper´s index.
1.-Hypothesis:
H₀      null hypothesis                        P₀  =  0,37
Hₐ  alternative hypothesis                P₀  >  0,37
2.-Confidence interval 95 %
α  =   0,05        and    z(c)  =  1.64
3.-Compute of z(s)
z(s)  =  [  P  -  P₀  ]  /√(P₀Q₀/n) ]   
z(s)  =  [ (  0,47  -  0,37  ) /  √0.37*0,63/100
z(s)  = 0,1 /√0,2331/100     ⇒   z(s)  = 0,1 /0,048
z(s)  = 2.08
4.-Compare  z(s)   and  z(c)
z(s) > z(c)        2.08  > 1.64
5.-Decision:
z(s)  is in the rejection zone , therefore we reject H₀
We have enough evidence to claim the proportion of individuals who attended college and believe in extraterrestrials is bigger than 37%