Answer:
95% two-sided confidence interval on the true mean breaking strength is (94.8cm, 99.2cm)
Step-by-step explanation:
Our sample size is 11.
The first step to solve this problem is finding our degrees of freedom, that is, the sample size subtracted by 1. So
.
Then, we need to subtract one by the confidence level
and divide by 2. So:

Now, we need our answers from both steps above to find a value T in the t-distribution table. So, with 10 and 0.025 in the two-sided t-distribution table, we have 
Now, we find the standard deviation of the sample. This is the division of the standard deviation by the square root of the sample size. So

Now, we multiply T and s
cm
For the upper end of the interval, we add the sample mean and M. So the upper end of the interval here is
cm
So
95% two-sided confidence interval on the true mean breaking strength is (94.8cm, 99.2cm).
Answer:

Step-by-step explanation:



You finish the leftover.
<h3>Answers are:
sine, tangent, cosecant, cotangent</h3>
Explanation:
On the unit circle we have some point (x,y) such that x = cos(theta) and y = sin(theta). The sine corresponds to the y coordinate of the point on the circle. Quadrant IV is below the x axis which explains why sine is negative here, since y < 0 here.
Since sine is negative, so is cosecant as this is the reciprocal of sine
csc = 1/sin
In quadrant IV, cosine is positive as x > 0 here. So the ratio tan = sin/cos is going to be negative. We have a negative over a positive when we divide.
Because tangent is negative, so is cotangent.
The only positive functions in Q4 are cosine and secant, which is because sec = 1/cos.
Answer:
Explanation: start by adding 34 to both sides to make the variable stand alone giving you
7y is greater than or equal to 42
Then divide 7 into both sides to give you the answer of
Y=6
Step-by-step explanation:
V = h × w × l
7650 = 9 × 25 × l
So,
l = 7650 ÷ 9 ÷ 25
l = 850 ÷ 25
l = 34
For the final, the length is 34.